- GEE数据集——Harmonized Landsat Sentinel-2 (HLS) 卫星sentinel-2哨兵-2(HLS)
此星光明
GEE数据集专栏sentinel遥感影像gee数据集nasaHLS-2
简介统一大地遥感卫星哨兵-2(HLS)项目通过虚拟卫星传感器群提供一致的地表反射率(SR)和大气层顶部亮度(TOA)数据。陆地成像仪(OLI)安装在美国宇航局/美国地质调查局的联合陆地卫星8号和陆地卫星9号上,而多光谱仪(MSI)则安装在欧洲的哥白尼哨兵-2A号和哨兵-2B号卫星上。通过综合测量,可以每2到3天以30米的空间分辨率对陆地进行全球观测。HLS项目使用一套算法来获得OLI和MSI的无缝
- 4D雷达再上热搜!华为/小米上车
高工智能汽车
自动驾驶人工智能汽车
智驾能力边界的不断抬升,对于传感器的要求仍在增加。去年至今,不管是端到端,还是大模型,本质上并没有解决摄像头(视觉感知)的物理性能缺陷;激光雷达处于成本下降区间,安全冗余作用明显,但对于恶劣天气、穿透能力以及抗干扰性仍存在劣势。而毫米波雷达“全天候全天时”工作的能力恰恰是最好的补充;同时,随着4D成像雷达技术的成熟,也解决了过去一直存在的目标识别精度有限、分辨率低以及高程探测能力有限等问题。尤其是
- 探地雷达F-K偏移算法详解与Python实现
T2ccc
探地雷达算法python
探地雷达F-K偏移算法详解与Python实现文章目录探地雷达F-K偏移算法详解与Python实现前言一、探地雷达成像原理与偏移的必要性二、F-K偏移的基本原理2.1波的传播与频率-波数域2.2F-K偏移的基本思路三、F-K偏移算法的数学推导3.1二维傅里叶变换3.2波场外推3.3Stolt映射(核心步骤)3.4逆变换四、F-K偏移的Python代码实现4.1辅助函数和数据准备4.2F-K偏移核心函
- 【图像去雾】基于多尺度Retinex实现图像去雾附Matlab代码
Matlab科研辅导帮
图像处理matlab开发语言
✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍1.引言雾霾天气严重影响了人们的生活和工作,对图像的清晰度也造成了极大的破坏。图像去雾技术旨在消除图像中的雾霾,恢复图像的真实色彩和细节,在交通监控、遥感成像、医学影像等领域具有广泛的应用价值。近年来,基于Retinex理论的图像去雾方法取得了
- 论文学习:基于机器学习的光声图像分析1
superace7911
基于机器学习的光声图像处理机器学习人工智能图像处理
3/25——3/31期间论文学习笔记,关于基于机器学习的光声图像分析的6篇1区论文血管结构模拟&分割:Quantificationofvascularnetworksinphotoacousticmesoscopy链接数据集链接摘要这篇论文提出了一种新的方法,利用中观光声成像(MesoscopicPhotoacousticImaging,PAI)技术和高级图像分析技术,来非侵入性地定量化和分析活体
- CMOS 图像传感器市场趋势和新兴应用
沧海一升
CMOS图像传感器成像CISsensor图像传感器image
2024年底,Yole举办了一场网络研讨会,有关CMOS图像传感器市场的最新趋势和新兴应用,本次网络研讨会由EdgeAI+Vision联盟联合举办,讨论了CIS供应商如何专注于增强传感器功能,以及如何将其产品组合转向更高潜在价值的市场。除此外还探讨了神经形态、光学超表面、短波红外和多光谱成像等新兴传感模式将如何在未来补充CMOS图像传感器,在某些情况下甚至取代CMOS图像传感器。可以在下面链接看到
- 2025年工业智能对讲机有多智能?数据采集+AI不在话下!
AORO_BEIDOU
人工智能信息与通信智能手机安全网络
在工业通信领域,对讲机始终是不可替代的即时交互工具。但传统设备仅能实现基础语音传输的局限性,已难以满足现代工业对效率与智能化的需求。遨游通讯推出的新一代智能对讲机,凭借DeepSeek本地化部署与模块化数据采集能力,实现了语音交互的智能升级,并通过红外热成像、NFC、工业内窥镜等专业模块的深度融合,构建起覆盖现场感知、数据分析与决策支持的闭环体系。AOROM55G智能对讲机传统的对讲机往往只能进行
- 机器视觉3D上下料技术上的分析
视觉人机器视觉
杂说3dc#人工智能AI编程opencv开发语言
机器视觉3D上下料是工业自动化领域的重要应用,通过3D视觉技术引导机器人完成物料的精准抓取、定位和放置,尤其适用于复杂、无序或高精度的场景。以下是其核心内容梳理:核心组成3D视觉系统:硬件:常用3D相机(结构光、ToF、双目视觉等),如Kinect、IntelRealSense、工业级品牌(Keyence、康耐视,苏州大视通智能科技有限公司)。软件:点云处理(如PCL库)、三维匹配算法(ICP、深
- 磁共振成像的物理方法基础
supernova121
算法
磁共振的基本原理1.1原子核的自选角动量与自旋磁矩1.1.1在微观世界中,自旋与质量一样是所有微观粒子的基本属性。1.1.2当原子核质量数为奇数时,原子核自旋量子数取半整数。1.1.3当原子核质量数为偶数时,原子核自旋量子数取整数。1.1.4当质量数与原子序数均为偶数时,原子核自旋量子数为0,不能发生核磁共振现象当自旋量子数为半整数时,原子核能够产生更强的NMR信号,因为半整数自旋原子核具有向上和
- 农业无人机:无人机图像采集_(2).无人机图像采集技术基础
zhubeibei168
无人机无人机人机交互人工智能农业检测图像处理
无人机图像采集技术基础1.无人机图像采集系统概述无人机图像采集系统是农业无人机的核心组成部分之一,通过高空拍摄的方式,可以获取大范围农田的高分辨率图像。这些图像不仅用于监测作物生长情况,还可以帮助识别病虫害、土壤湿度、营养状况等信息。无人机图像采集系统主要由以下几个部分组成:飞行平台:通常包括多旋翼无人机或固定翼无人机,负责在空中进行稳定飞行。图像传感器:包括RGB摄像头、多光谱摄像头、热成像摄像
- Fura-FF AM,Cell Permeant 钙离子荧光探针,工作溶液的配制方法
试剂琼
leetcode模拟退火算法支持向量机决策树最小二乘法散列表随机森林
试剂简介Fura-FFAM,CellPermeant钙离子荧光探针由西安强化生物科技开发。在比率钙指示剂中,常用的是Fura-2和Indo-1。Fura-2具有激发比率,而Indo-1具有发射比率。Fura-2是比率成像显微镜的一种,在这种显微镜中,改变激发波长比改变发射波长要实用。具有细胞渗透性的Fura-2FFAM是Fura-2AM的类似物,具有低得多的钙结合亲和力,Kd~10µM。这种AM酯
- 书籍-《医学图像分析(论文版)》
计算机视觉深度学习人工智能
书籍:MedicalImageAnalysis作者:AlejandroFrangi,JerryPrince,MilanSonka出版:AcademicPress编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《医学图像分析(论文版)》01书籍介绍医学成像技术是许多生物医学科学突破的基础,成为推动生物医学科学进步的关键技术。《医学图像分析》一书提供了医学图像计算和分析的实用知识,由该领域的顶尖教
- OpenCV计算摄影学(7)HDR成像之多帧图像对齐的类cv::AlignMTB
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该算法将图像转换为中值阈值位图(MedianThresholdBitmap,MTB):1.位图生成:计算图像亮度中值作为全局阈值2亮度高于中值的像素标记为1,否则标记为0,形成二值位图2.位操作对齐:通过位移(bit-shifting)和异或(XO
- 三轴云台之热成像参数篇
SKYDROID云卓小助手
算法网络人工智能计算机视觉电脑
一、基本成像参数分辨率:分辨率决定了图像的清晰度。例如,640×512的分辨率表示图像由640个水平像素和512个垂直像素组成。不同型号的云台可能具有不同的分辨率,高端型号可能支持更高的分辨率。数字变倍:数字变倍允许用户在不改变镜头焦距的情况下放大或缩小图像。变倍倍数越高,用户可以在不移动云台的情况下更详细地观察目标。常见的数字变倍倍数有8倍、16倍、24倍、30倍等。视场角:视场角表示镜头能够捕
- 吲哚菁绿标记牛血清白蛋白|ICG-BSA
星贝爱科
吲哚菁绿标记牛血清白蛋白ICG-BSA
吲哚菁绿标记牛血清白蛋白(ICG-BSA)是一种将吲哚菁绿(ICG)与牛血清白蛋白(BSA)结合形成的复合物,具有以下特点和应用:特点高荧光亮度:ICG具有较高的荧光亮度,使得ICG-BSA在荧光成像和检测中具有较高的信噪比和灵敏度。良好的生物相容性:ICG-BSA在生物体内具有良好的生物相容性,对细胞和组织无毒副作用,适用于生物医学研究和生物技术应用。稳定性好:ICG-BSA复合物在水溶液中稳定
- Snapshot Compressed Imaging:打破传统成像的新视界
AndrewHZ
深度学习新浪潮计算机视觉人工智能深度学习算法快照压缩成像
在我们的日常生活中,拍照、拍视频已经成为记录生活的常规操作。无论是用手机捕捉美丽的风景,还是用相机拍摄珍贵的瞬间,传统的成像方式似乎已经满足了我们大部分的需求。但你是否想过,在某些特殊的场景下,传统成像技术可能会遇到一些难题,而一种名为SnapshotCompressedImaging(快照压缩成像,简称SCI)的新兴技术正在悄然改变这一现状。传统成像的困境传统的成像技术,无论是相机还是摄像机,通
- 论文学习3:深度学习增强的光声成像(PAI)的最新进展(综述)
superace7911
基于机器学习的光声图像处理机器学习图像处理
原文链接有空可以细看,这里中列出了文中提到的部分研究结果写作大纲1.引言光声成像(PAI)的介绍,它结合了光学和超声成像的优点,为生物医学成像提供了一种有前景的模态。深度学习(DL)在解决PAI中存在的技术限制(如硬件限制、生物特征信息缺乏等)方面的潜力。2.DL方法的原理介绍DL的子集:监督学习、无监督学习和强化学习。详细说明代表性DL架构:卷积神经网络(CNN)、U-形神经网络(U-Net)和
- 【PCL】vs2022配置PCL环境
IT小学僧
点云python数据结构算法
vs2022配置PCL环境前言一、安装教程二、路径python脚本前言vs2022配置PCL环境和路径Python脚本一、安装教程看这位兄弟写的就行二、路径python脚本因为我和他的版本并不一样,一个一个改太麻烦了,所以特此写了个python脚本。请注意要脚本中OpenNI2位置,修改成你的位置即可。importos#查找给定路径中的PCL依赖库defdependency(paths):#将输入
- TMI‘24 | 注意力感知的非刚性图像配准加速磁共振成像
小白学视觉
医学图像处理论文解读深度学习论文解读医学图像顶刊医学图像处理TMI
论文信息题目:Attention-AwareNon-RigidImageRegistrationforAcceleratedMRImaging注意力感知的非刚性图像配准加速磁共振成像作者:AyaGhoul,JiazhenPan,AndreasLingg,JensKübler,PatrickKrumm,KerstinHammernik,DanielRueckert,SergiosGatidis,an
- [自动驾驶-传感器融合] 激光雷达的运动补偿
simba丶小小程序猿
自动驾驶人工智能机器学习
文章目录引言相关原理及代码示例IMU运动补偿的基本原理代码示例参考文献引言由于激光雷达成像原理是利用接发器与时间计算来获取光点的位置,所以在传感器的空间运动时,会出现雷达拖影现象(点云畸变),因此需要采用运动补偿来校准激光雷达的点云,本文及介绍下激光雷达的运动补偿原理及实现代码。相关原理及代码示例激光雷达(LiDAR)在运动过程中会产生运动畸变,影响点云的精度。运动补偿的基本原理是通过测量激光在发
- 边缘计算与联邦学习驱动医疗影像特征工程优化
智能计算研究中心
其他
内容概要随着医疗影像数据规模的指数级增长与多模态成像技术的普及,传统集中式特征工程方法面临数据孤岛、隐私泄露及计算效率等多重挑战。本研究针对医疗影像分析场景中跨机构数据共享的复杂性,提出基于边缘计算与联邦学习的协同优化框架,通过分布式特征工程重构医学图像的解析范式。该框架以卷积神经网络为核心,结合多阶段数据预处理流程(包括噪声抑制、模态对齐及标准化处理),实现跨设备医疗影像的特征表示统一化。在模型
- 分析React和Vue的区别与优势
Neo Evolution
前端框架
React和Vue是目前两种非常流行的前端框架/库,它们各自有独特的设计理念和特点。下面是它们在各个方面的比较,包括架构、学习曲线、性能等。1.架构与理念React:开发类型:React是一个UI库,专注于视图层的构建。它本身没有集成像Vue或Angular那样的完整框架,所以需要与其他库或工具结合使用(如ReactRouter、Redux、ContextAPI等)。设计理念:React强调组件化
- Python-OpenCV的单目视觉测距_python opencv 单目测距
2401_87556630
pythonopencv开发语言
已知物体的测量方法是指在已知物体信息的条件下利用摄像机获得的目标图片得到深度信息。此类方法主要应用于单目视觉进行导航和定位,该类方法的缺点是利用单个特征点进行测量,容易因特征点提取的不准确性,产生误差。我们采用摄像头采集图片,将三维场景投影到摄像机二维像平面上。对于测量地球坐标系中的物体而言,小孔成像模型(也称为线性摄像机模型)基本可以满足测量的要求,即任意点p1在图像中的投影位置p2为光心Oc与
- 【matlab】采用傅立叶变换空间载波法从强度分布恢复相位分布
鱼弦
人工智能时代matlab开发语言
采用傅立叶变换空间载波法从强度分布恢复相位分布介绍傅立叶变换空间载波法是一种从强度分布恢复相位分布的技术,广泛应用于光学测量、干涉测量、表面形貌测量等领域。该方法通过分析空间上呈正弦分布的光强信息,利用傅立叶变换提取相位信息,从而恢复波面的相位分布。应用使用场景光学测量:用于测量光学元件的表面形貌和波前误差。干涉测量:用于干涉仪中的相位恢复和表面形貌测量。生物医学成像:用于相位对比显微镜中的相位恢
- 基于立创·天空星开发板-GD32F407VET6-青春版,开发一款手持热成像仪。该设备将采集热红外传感器的数据,经过处理后在LCD屏幕上显示热图像,并提供用户交互界面。
嵌入式程序员小刘
物联网单片机嵌入式硬件开源
本项目基于立创·天空星开发板-GD32F407VET6-青春版,开发一款手持热成像仪。该设备将采集热红外传感器的数据,经过处理后在LCD屏幕上显示热图像,并提供用户交互界面。关注微信公众号,提前获取相关推文一、需求分析核心功能:热图像采集:读取热红外传感器数据。图像处理:将原始传感器数据转换为可显示的彩色或灰度热图像。图像显示:在LCD屏幕上实时显示热图像。温度测量:计算并显示图像中特定点的温度值
- 近地面无人机植被定量遥感与生理参数反演
岁月如歌,青春不败
生态遥感无人机遥感植被遥感生态科学生态模型植被科学农林
一:近十年近地面无人机植被遥感文献分析,传感器选择,观测方式及质量控制要点1.1.近十余年无人机植被遥感文献分析文献分析软件VOSviewer的使用无人机植被遥感的重点研究方向、研究机构、科学家家1.2.无人机遥感的特点及与卫星遥感的差异核心优势与四大基本特点无人机与卫星遥感影像的成像方式差异异1.3.无人机传感器类型、特点及选择消费级RGB相机的简要成像几何与光谱特点多光谱相机成像类型与核心问题
- 奥比中光3D机器视觉相机能连接halcon吗?
视觉人机器视觉
机器视觉3D3d数码相机视觉检测c#
奥比中光的设备与Halcon的兼容性可以通过以下方式实现:数据接口的通用性奥比中光的相机(如AstroPro、大白等)支持通过UVC协议获取彩色图像,深度数据则通过OpenNI或ROS2接口传输105。若Halcon支持这些协议或标准接口(如ROS消息、OpenCV图像流),则可通过直接调用或二次开发实现连接。例如,通过Python或C#脚本将图像数据从相机传输至Halcon的处理流程中。SDK与
- RTK负载(4K可见光+高分热成像+超广角+激光测距)四光AI智能识别跟踪吊舱技术详解
无人机技术圈
无人机技术人工智能
无人机+光电吊舱的RTK负载(4K可见光+高分热成像+超广角+激光测距)AI智能识别跟踪吊舱技术是一种高度集成和先进的无人机观测系统。系统结合了无人机的飞行能力和光电吊舱的多功能传感器,通过集成RTK(实时动态差分定位)技术、4K可见光摄像头、高分热成像仪、超广角镜头和激光测距仪,以及AI智能识别跟踪算法,实现了对地面目标的精准观测、识别、跟踪和测量。以下是该技术的主要特点和功能详解:1.4K可见
- 双光吊舱应用行业!!
云卓SKYDROID
无人机云卓科技知识高科技双光吊舱
1.军事领域侦察与监视:双光吊舱能够全天候、全气候地提供高清图像数据,支持军事侦察和监视任务。通过可见光相机和红外热成像仪的结合,吊舱可以在白天和夜晚、晴天和恶劣天气条件下,为无人机等空中平台提供清晰的战场图像,帮助指挥人员做出准确的决策。目标识别与跟踪:吊舱内置的目标识别算法能够实现对远距离目标的追踪、摄像和监控,特别是在夜间或恶劣天气条件下,红外热成像技术能够发挥重要作用。远程打击:无人机搭载
- 点云从入门到精通技术详解100篇-基于 CBCT 与口内扫描数据的牙齿点云配准
格图素书
深度学习计算机视觉数学建模人工智能
目录前言国内外研究现状传统牙齿配准点云配准2牙齿数据的深度学习点云配准基础2.1牙齿数据获取方法2.1.1口腔印模2.1.2辐射成像2.1.3口内扫描2.2深度学习网络2.2.1全连接神经网络2.2.2卷积神经网络2.2.3孪生神经网络2.3点云数据配准基础2.3.1点云数据格式2.3.2点云旋转表达2.3.3传统点云配准方法3基于PCRNet的PCR-SA牙齿点云配准3.1CBCT-IOS牙齿配
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><