用 ElementTree 在 Python 中解析 XML

原文: http://eli.thegreenplace.net/2012/03/15/processing-xml-in-python-with-elementtree/

译者: TheLover_Z

当你需要解析和处理 XML 的时候,Python 表现出了它 “batteries included” 的一面。 标准库 中大量可用的模块和工具足以应对 Python 或者是 XML 的新手。

几个月前在 Python 核心开发者之间发生了一场 有趣的讨论 ,他们讨论了 Python 下可用的 XML 处理工具的优点,还有如何将它们最好的展示给用户看。这篇文章是我本人的拙作,我打算讲讲哪些工具比较好用还有为什么它们好用,当然,这篇文章也可以当作一个如何使用的基础教程来看。

这篇文章所使用的代码基于 Python 2.7,你稍微改动一下就可以在 Python 3.x 上面使用了。

应该使用哪个 XML 库?

Python 有非常非常多的工具来处理 XML。在这个部分我想对 Python 所提供的包进行一个简单的浏览,并且解释为什么 ElementTree 是你最应该用的那一个。

xml.dom.* 模块 - 是 W3C DOM API 的实现。如果你有处理 DOM API 的需要,那么这个模块适合你。注意:在 xml.dom 包里面有许多模块,注意它们之间的不同。

xml.sax.* 模块 - 是 SAX API 的实现。这个模块牺牲了便捷性来换取速度和内存占用。SAX 是一个基于事件的 API,这就意味着它可以“在空中”(on the fly)处理庞大数量的的文档,不用完全加载进内存(见注释1)。

xml.parser.expat - 是一个直接的,低级一点的基于 C 的 expat 的语法分析器(见注释2)。 expat 接口基于事件反馈,有点像 SAX 但又不太像,因为它的接口并不是完全规范于 expat 库的。

最后,我们来看看 xml.etree.ElementTree (以下简称 ET)。它提供了轻量级的 Python 式的 API ,它由一个 C 实现来提供。相对于 DOM 来说,ET 快了很多(见注释3)而且有很多令人愉悦的 API 可以使用。相对于 SAX 来说,ET 也有 ET.iterparse 提供了 “在空中” 的处理方式,没有必要加载整个文档到内存。ET 的性能的平均值和 SAX 差不多,但是 API 的效率更高一点而且使用起来很方便。我一会儿会给你们看演示。

我的建议 是尽可能的使用 ET 来处理 XML ,除非你有什么非常特别的需要。

ElementTree - 一个 API ,两种实现

ElementTree 生来就是为了处理 XML ,它在 Python 标准库中有两种实现。一种是纯 Python 实现例如 xml.etree.ElementTree ,另外一种是速度快一点的 xml.etree.cElementTree 。你要记住: 尽量使用 C 语言实现的那种,因为它速度更快,而且消耗的内存更少。如果你的电脑上没有 _elementtree (见注释4) 那么你需要这样做:

try:importxml.etree.cElementTreeasETexceptImportError:importxml.etree.ElementTreeasET

这是一个让 Python 不同的库使用相同 API 的一个比较常用的办法。还是那句话,你的编译环境和别人的很可能不一样,所以这样做可以防止一些莫名其妙的小问题。注意:从 Python 3.3 开始,你没有必要这么做了,因为 ElementTree 模块会自动寻找可用的 C 库来加快速度。所以只需要 importxml.etree.ElementTree 就可以了。但是在 3.3 正式推出之前,你最好还是使用我上面提供的那段代码。

将 XML 解析为树的形式

我们来讲点基础的。XML 是一种分级的数据形式,所以最自然的表示方法是将它表示为一棵树。ET 有两个对象来实现这个目的 -ElementTree 将整个 XML 解析为一棵树, Element 将单个结点解析为树。如果是整个文档级别的操作(比如说读,写,找到一些有趣的元素)通常用 ElementTree 。单个 XML 元素和它的子元素通常用 Element 。下面的例子能说明我刚才��嗦的一大堆。(见注释5)

我们用这个 XML 文件来做例子:

<?xml version="1.0"?>
<doc>
    <branch name="testing" hash="1cdf045c">
        text,source
    </branch>
    <branch name="release01" hash="f200013e">
        <sub-branch name="subrelease01">
            xml,sgml
        </sub-branch>
    </branch>
    <branch name="invalid">
    </branch>
</doc>

让我们加载并且解析这个 XML :

>>> importxml.etree.cElementTreeasET>>> tree=ET.ElementTree(file='doc1.xml')

然后抓根结点元素:

>>> tree.getroot()<Element 'doc' at 0x11eb780>

和预期一样,root 是一个 Element 元素。我们可以来看看:

>>> root=tree.getroot()>>> root.tag,root.attrib('doc', {})

看吧,根元素没有任何状态(见注释6)。就像任何 Element 一样,它可以找到自己的子结点:

>>> forchild_of_rootinroot:... printchild_of_root.tag,child_of_root.attrib...branch {'hash': '1cdf045c', 'name': 'testing'}branch {'hash': 'f200013e', 'name': 'release01'}branch {'name': 'invalid'}

我们也可以进入一个指定的子结点:

>>> root[0].tag,root[0].text('branch', '\n    text,source\n  ')

找到我们感兴趣的元素

从上面的例子我们可以轻而易举的看到,我们可以用一个简单的递归获取 XML 中的任何元素。然而,因为这个操作比较普遍,ET 提供了一些有用的工具来简化操作.

Element 对象有一个 iter 方法可以对子结点进行深度优先遍历。 ElementTree 对象也有 iter 方法来提供便利。

>>> forelemintree.iter():... printelem.tag,elem.attrib...doc {}branch {'hash': '1cdf045c', 'name': 'testing'}branch {'hash': 'f200013e', 'name': 'release01'}sub-branch {'name': 'subrelease01'}branch {'name': 'invalid'}

遍历所有的元素,然后检验有没有你想要的。ET 可以让这个过程更便捷。 iter 方法接受一个标签名字,然后只遍历那些有指定标签的元素:

>>> forelemintree.iter(tag='branch'):... printelem.tag,elem.attrib...branch {'hash': '1cdf045c', 'name': 'testing'}branch {'hash': 'f200013e', 'name': 'release01'}branch {'name': 'invalid'}

来自 XPath 的帮助

为了寻找我们感兴趣的元素,一个更加有效的办法是使用 XPath 支持。 Element 有一些关于寻找的方法可以接受 XPath 作为参数。 find返回第一个匹配的子元素, findall 以列表的形式返回所有匹配的子元素, iterfind 为所有匹配项提供迭代器。这些方法在 ElementTree里面也有。

给出一个例子:

>>> forelemintree.iterfind('branch/sub-branch'):... printelem.tag,elem.attrib...sub-branch {'name': 'subrelease01'}

这个例子在 branch 下面找到所有标签为 sub-branch 的元素。然后给出如何找到所有的 branch 元素,用一个指定 name 的状态即可:

>>> forelemintree.iterfind('branch[@name="release01"]'):... printelem.tag,elem.attrib...branch {'hash': 'f200013e', 'name': 'release01'}

想要深入学习 XPath 的话,请看 这里 。

建立 XML 文档

ET 提供了建立 XML 文档和写入文件的便捷方式。 ElementTree 对象提供了 write 方法。

现在,这儿有两个常用的写 XML 文档的脚本。

修改文档可以使用 Element 对象的方法:

>>> root=tree.getroot()>>> delroot[2]>>> root[0].set('foo','bar')>>> forsubeleminroot:... printsubelem.tag,subelem.attrib...branch {'foo': 'bar', 'hash': '1cdf045c', 'name': 'testing'}branch {'hash': 'f200013e', 'name': 'release01'}

我们在这里删除了根元素的第三个子结点,然后为第一个子结点增加新状态。然后这个树可以写回到文件中。

>>> importsys>>> tree.write(sys.stdout)# ET.dump can also serve this purpose<doc>  <branch foo="bar" hash="1cdf045c" name="testing">    text,source  </branch><branch hash="f200013e" name="release01">  <sub-branch name="subrelease01">    xml,sgml  </sub-branch></branch></doc>

注意状态的顺序和原文档的顺序不太一样。这是因为 ET 讲状态保存在无序的字典中。语义上来说,XML 并不关心顺序。

建立一个全新的元素也很容易。ET 模块提供了 SubElement 函数来简化过程:

>>> a=ET.Element('elem')>>> c=ET.SubElement(a,'child1')>>> c.text="some text">>> d=ET.SubElement(a,'child2')>>> b=ET.Element('elem_b')>>> root=ET.Element('root')>>> root.extend((a,b))>>> tree=ET.ElementTree(root)>>> tree.write(sys.stdout)<root><elem><child1>some text</child1><child2 /></elem><elem_b /></root>

使用 iterparse 来处理 XML 流

就像我在文章一开头提到的那样,XML 文档通常比较大,所以将它们全部读入内存的库可能会有点儿小问题。这也是为什么我建议使用 SAX API 来替代 DOM 。

我们刚讲过如何使用 ET 来将 XML 读入内存并且处理。但它就不会碰到和 DOM 一样的内存问题么?当然会。这也是为什么这个包提供一个特殊的工具,用来处理大型文档,并且解决了内存问题,这个工具叫 iterparse

我给大家演示一个 iterparse 如何使用的例子。我用 自动生成 拿到了一个 XML 文档来进行说明。这只是开头的一小部分:

<?xml version="1.0" standalone="yes"?>
<site>
    <regions>
        <africa>
            <item id="item0">
                <location>United States</location>    <!-- Counting locations -->
                <quantity>1</quantity>
                <name>duteous nine eighteen </name>
                <payment>Creditcard</payment>
                <description>
                    <parlist>
[...]

我已经用注释标出了我要处理的元素,我们用一个简单的脚本来计数有多少 location 元素并且文本内容为“Zimbabwe”。这是用 ET.parse的一个标准的写法:

tree=ET.parse(sys.argv[2])count=0forelemintree.iter(tag='location'):ifelem.text=='Zimbabwe':count+=1printcount

所有 XML 树中的元素都会被检验。当处理一个大约 100MB 的 XML 文件时,占用的内存大约是 560MB ,耗时 2.9 秒。

注意:我们并不需要在内存中加载整颗树。它检测我们需要的带特定值的 location 元素。其他元素被丢弃。这是 iterparse 的来源:

count=0forevent,eleminET.iterparse(sys.argv[2]):ifevent=='end':ifelem.tag=='location'andelem.text=='Zimbabwe':count+=1elem.clear()# discard the elementprintcount

这个循环遍历 iterparse 事件,检测“闭合的”(end)事件并且寻找 location 标签和指定的值。在这里 elem.clear() 是关键 - iterparse仍然建立一棵树,只不过不需要全部加载进内存,这样做可以有效的利用内存空间(见注释7)。

处理同样的文件,这个脚本占用内存只需要仅仅的 7MB ,耗时 2.5 秒。速度的提升归功于生成树的时候只遍历一次。相比较来说, parse方法首先建立了整个树,然后再次遍历来寻找我们需要的元素(所以慢了一点)。

结论

在 Python 众多处理 XML 的模块中, ElementTree 真是�疟�了。它将轻量,符合 Python 哲学的 API ,出色的性能完美的结合在了一起。所以说如果要处理 XML ,果断地使用它吧!

这篇文章简略地谈了谈 ET 。我希望这篇拙作可以抛砖引玉。


你可能感兴趣的:(用户,文章,开发者,如何,included)