- K-means聚类:解锁数据隐藏结构的钥匙
陈辰学长
kmeans聚类机器学习
K-means聚类:解锁数据隐藏结构的钥匙在机器学习的广阔领域中,无监督学习以其独特的魅力吸引了众多研究者和实践者。其中,K-means聚类作为一种经典且实用的无监督学习算法,以其简单高效的特点,广泛应用于市场细分、图像分割和基因聚类等领域。本文将深入探讨K-means聚类的工作原理、应用实例及其在这些领域中的具体应用,旨在揭示其如何智能划分数据,解锁隐藏结构,为相关领域提供精准导航。一、K-me
- ACNet:深度学习中的自适应卷积网络新星
郎轶诺
ACNet:深度学习中的自适应卷积网络新星项目地址:https://gitcode.com/gh_mirrors/ac/ACNet在深度学习领域,卷积神经网络(CNN)一直是图像处理和计算机视觉任务的核心技术。然而,传统的固定大小的卷积核无法灵活适应不同区域的信息密度。针对这一问题,ACNet(AdaptiveConvolutionNetwork)项目应运而生,它引入了一种新型的自适应卷积层,旨在
- 与机器学习的邂逅--自适应神经网络结构的深度解析
想成为高手499
机器学习与人工智能机器学习神经网络人工智能
引言随着人工智能的发展,神经网络已成为许多应用领域的重要工具。自适应神经网络(AdaptiveNeuralNetworks,ANN)因其出色的学习能力和灵活性,逐渐成为研究的热点。本文将详细探讨自适应神经网络的基本概念、工作原理、关键技术、C++实现示例及其应用案例,最后展望未来的发展趋势。自适应神经网络的基本概念什么是自适应神经网络?自适应神经网络是一种能够根据输入数据的变化和环境的动态特性自动
- 自适应神经网络架构:原理解析与代码示例
chian-ocean
机器学习神经网络人工智能深度学习
个人主页:chian-ocean文章专栏自适应神经网络结构:深入探讨与代码实现1.引言随着深度学习的不断发展,传统神经网络模型在处理复杂任务时的局限性逐渐显现。固定的网络结构和参数对于动态变化的环境和多样化的数据往往难以适应,导致了过拟合或欠拟合的问题。自适应神经网络(AdaptiveNeuralNetworks,ANN)为此提供了一种新的解决方案,它可以根据数据特征和训练情况自动调整网络结构,从
- python多进程编程实例_Python多进程编程multiprocessing代码实例
weixin_39791386
python多进程编程实例
在多线程与多进程的比较这一篇中记录了多进程编程的一种方式.下面记录一下多进程编程的别一种方式,即使用multiprocessing编程importmultiprocessingimporttimedefget_html(n):time.sleep(n)print('subprocess%s'%n)returnnif__name__=='__main__':#多进程编程process=multipr
- python打开一个软件并进行操作_模拟试卷 B
weixin_39551611
原标题:模拟试卷B一、单项选择题1.关于算法的描述,以下选项中错误的是算法是指解题方案的准确而完整的描述算法具有可行性、确定性、有穷性的基本特征算法的复杂度主要包括时间复杂度和数据复杂度算法的基本要素包括数据对象的运算和操作及算法的控制结构2.关于数据结构的描述,以下选项中正确的是数据结构指相互有关联的数据元素的集合数据的存储结构是指反映数据元素之间逻辑关系的数据结构数据的逻辑结构有顺序、链接、索
- 工作流开发过程
Dev2010Daily
软件开发基础知识工作jbpm引擎java
1、首先要识别出工作流,即找出候选的工作流。2、可视化流程建模,此处将用到的是jBPM(jBPMGraphicalProcessDesignerGPD)editor3、开发运行时的元件4、布署运行时引擎jBPM提供了多种不同的布署场景:(1)引擎与实例同时使用---jBPMConsole(2)用JAVA类实例来实例化引擎5、实例化运行时实例6、监控和审计
- SOA 术语概述,第 2 部分: 开发流程、模型和资产
rochening
soaumlibmeclipse工作平台
文档选项将此页作为电子邮件发送拓展Tomcat应用下载IBM开源J2EE应用服务器WASCE新版本V1.1级别:初级BertrandPortier(
[email protected]),IT架构师,IBM,Intel,Microsoft,HP2007年5月23日了解一些基本SOA术语。本文是本系列的第2部分,BertrandPortier将在其中定义一些术语(包括开发流程、模型和资产)并说明为
- 为什么算法很难掌握
浅墨cgz
算法
算法之所以难以掌握,主要是因为以下几个原因:1.抽象性算法是对问题的抽象解决方案,通常不依赖于具体的编程语言或实现细节。初学者可能难以将抽象的逻辑转化为具体的代码。例如,动态规划(DP)的核心思想是将问题分解为子问题并存储中间结果,但这种抽象思维需要大量练习才能掌握。2.数学基础要求许多算法依赖于数学知识,例如:时间复杂度分析:需要理解大O表示法、递归关系等。图论算法:需要了解图的基本概念(如节点
- 【AI论文】迈向大型推理模型:大型语言模型增强推理综述
东临碣石82
人工智能语言模型自然语言处理
摘要:语言长久以来被视为人类推理不可或缺的工具。大型语言模型(LLM)的突破激发了利用这些模型解决复杂推理任务的浓厚研究兴趣。研究人员已经超越了简单的自回归词元生成,引入了“思维”的概念——即代表推理过程中间步骤的词元序列。这一创新范式使LLM能够模仿复杂的人类推理过程,如树搜索和反思性思维。近期,一种新兴的学习推理趋势采用强化学习(RL)来训练LLM掌握推理过程。这种方法通过试错搜索算法自动生成
- 【C++算法笔记】最基础篇------高精度算法
孙小健的资料站
算法学习笔记c++算法笔记
个人笔记:只提供学习代码和其步骤思路,仅供参考学习,已提前在相关编译器中提前运行并保证代码运行。为什么要用高精度算法:longlong的存储大小为9*10^19,即超过20位的数字将无法使用基本数据类型存储和计算,所以我们要使用其他方法存储设计。涉及基础知识:基本输入输出,字符串及数组的基本运用基础步骤:1.对字符串s1,s2进行承接2.将a1与a2相加的和存入a33.从左向右进位并出现逆序#in
- AscendC从入门到精通系列(一)初步感知AscendC
人工智能深度学习
1什么是AscendCAscendC是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,兼具开发效率和运行性能。基于AscendC编写的算子程序,通过编译器编译和运行时调度,运行在昇腾AI处理器上。使用AscendC,开发者可以基于昇腾AI硬件,高效的实现自定义的创新算法。算子开发学习地图:2从helloworld出发感受AscendC2.1使用AscendC写核函数包含核函数的
- ATB是什么?
人工智能深度学习
1ATB介绍AscendTransformerBoost加速库(下文简称为ATB加速库)是一款高效、可靠的加速库,基于华为AscendAI处理器,专门为Transformer类模型的训练和推理而设计。ATB加速库采用了一系列优化策略,包括算法优化、硬件优化和软件优化,能够显著提升Transformer模型的训练和推理速度,同时降低能耗和成本。具体来说,ATB加速库通过优化矩阵乘法等核心算子和注意力
- 服务稳定性保障的五大误解
运维sre
在线服务的稳定性保障一直是运维和技术部门的核心工作之一。但时至今日,这个方向实际仍然有很多基本的概念都没有对齐。今天这篇文章就罗列下那些混淆不清的概念,期望有一天大家沟通时不是鸡同鸭讲,各说各话。误解一:服务可用性听过很多技术分享,看过很多平台的承诺,上来都是讲我们的服务稳定性99.9xx%,但似乎都“忘记”了提供这个稳定性的具体算法和解读。如果没有明确的定义,这个数值其实毫无意义。服务稳定性目标
- 一个简单的麻将算法
长心了么
算法pythonwindows
这个算法主要是帮助计算胡的什么牌跟给一些策略,给出几个测试样例自己体会一下就好了,能够比较快的计算出怎么胡牌,如何快速胡牌,无聊写着玩的。#使用1-9表示筒子,11-19表示条子,21-29表示万子,31表示红中,32表示发财,33表示白板,41-44表示东南西北#样例1:hand=[6,6,7,7,7,8,8,8]#样例2:hand=[6,7,7,7,8,8,8,2]#样例3:hand=[2,3
- 基于google的libphonenumber包,获取手机号的归属信息:运营商,归属地
小哇666
功能模块java
1pom.xml8.13.262.2201.210com.googlecode.libphonenumberlibphonenumber${libphonenumber.version}com.googlecode.libphonenumbercarrier${libphonenumber.carrier}com.googlecode.libphonenumbergeocoder${libphon
- 线性回归:从基础到进阶的全面解析
tester Jeffky
大模型线性回归机器学习算法
线性回归:从基础到进阶的全面解析线性回归是机器学习中最基本的算法之一,广泛应用于预测和分析。本文将详细介绍线性回归的基本概念、数学原理、实现方法以及在实际应用中的注意事项。我们将通过丰富的代码示例来展示如何从头开始构建一个简单的线性回归模型,并逐步深入到更复杂的场景。1.线性回归的基本概念1.1什么是线性回归?线性回归是一种用于建模两个或多个变量之间关系的统计方法。它假设因变量(目标变量)与一个或
- 华为OD机试E卷 --跳马--24年OD统一考试(Java & JS & Python & C & C++)
飞码创造者
最新华为OD机试题库2024华为odjavajavascriptpythonc语言
文章目录题目描述输入描述输出描述用例题目解析JS算法源码Java算法源码python算法源码c算法源码c++算法源码题目描述马是象棋(包括中国象棋和国际象棋)中的棋子,走法是每步直一格再斜一格,即先横着或者直者走一格,然后再斜着走一个对角线,可进可退,可越过河界,俗称"马走日"字。给定m行n列的棋盘(网格图),棋盘上只有棋子象棋中的棋子“马”,并且每个棋子有等级之分,等级为k的马可以跳1~k步(走
- YOLOv9改进,YOLOv9检测头融合,适合目标检测、分割任务
挂科边缘
YOLOv9改进目标检测人工智能计算机视觉YOLO
摘要空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制——感受野注意力(RFA)。现有的空间注意力机制,如卷积块注意力模块(CBAM)和协调注意力(CA),仅关注空间特征,未能完全解决卷积核参数共享
- YOLOv8改进,YOLOv8检测头融合RFAConv卷积,并添加小目标检测层(四头检测),适合目标检测、分割等
挂科边缘
YOLOv8改进YOLO目标检测人工智能计算机视觉深度学习
摘要空间注意力已广泛应用于提升卷积神经网络(CNN)的性能,但它存在一定的局限性。作者提出了一个新的视角,认为空间注意力机制本质上解决了卷积核参数共享的问题。然而,空间注意力生成的注意力图信息对于大尺寸卷积核来说是不足够的。因此,提出了一种新型的注意力机制——感受野注意力(RFA)。现有的空间注意力机制,如卷积块注意力模块(CBAM)和协调注意力(CA),仅关注空间特征,未能完全解决卷积核参数共享
- 基于YOLOv5、YOLOv8和YOLOv10的自助售货机商品检测:深度学习实践与应用
2025年数学建模美赛
YOLO深度学习人工智能目标跟踪目标检测
引言自助售货机已经成为现代零售和自动化销售领域的重要组成部分。在自助售货机中,商品的检测与管理至关重要。通过精准的商品检测技术,售货机可以在商品售出后自动更新库存,并提供准确的商品信息反馈。然而,在复杂的环境下进行商品检测是一个具有挑战性的问题,尤其是在商品种类繁多、摆放方式多样以及光照条件变化较大的情况下。近年来,基于深度学习的目标检测算法,特别是YOLO(YouOnlyLookOnce)系列模
- SpringBoot使用令牌桶算法+拦截器+自定义注解+自定义异常实现简单的限流
Java精选
算法springboot前端后端java
令牌桶在高并发的情况下,限流是后端常用的手段之一,可以对系统限流、接口限流、用户限流等,本文就使用令牌桶算法+拦截器+自定义注解+自定义异常实现限流的demo。令牌桶思想大小固定的令牌桶可自行以恒定的速率源源不断地产生令牌。如果令牌不被消耗,或者被消耗的速度小于产生的速度,令牌就会不断地增多,直到把桶填满。后面再产生的令牌就会从桶中溢出。最后桶中可以保存的最大令牌数永远不会超过桶的大小。然后每个访
- 【论文投稿】探秘计算机视觉算法:开启智能视觉新时代
小周不想卷
艾思科蓝学术会议投稿计算机视觉
目录引言一、计算机视觉算法基石:图像基础与预处理二、特征提取:视觉信息的精华萃取三、目标检测:从图像中精准定位目标四、图像分类:识别图像所属类别五、语义分割:理解图像的像素级语义六、计算机视觉算法前沿趋势与挑战引言在当今数字化浪潮中,计算机视觉宛如一颗璀璨的明珠,正深刻地改变着我们与世界的交互方式。从安防监控中的精准识别,到自动驾驶汽车的智能导航;从医疗影像的辅助诊断,到工业生产中的缺陷检测,计算
- 递归算法实践--到仓合单助力京东物流提效增收
程序员
作者:京东物流李硕#一、背景京东物流到仓业务「对商家」为了减少商家按照京东采购单分货备货过程,对齐行业直接按照流向交接,提升商家满意度;「对京东」揽收操作APP提效;到仓合单功能应运而生;二、问题一次批量采购单(一次50或者100个采购单)需要根据不同的规则合并成多个订单;每一个采购单可以是不同的来源类型(自营和非自营)、不同的收货类型,每一个采购单会有多个SKU,同一个SKU只有一个等级,一批采
- MATLAB 路径管理
鱼弦
人工智能时代matlab算法数据库
MATLAB路径管理MATLAB路径管理是MATLAB中非常重要的功能,它决定了MATLAB如何查找和加载函数、脚本、数据文件等资源。合理的路径管理可以提高代码的可维护性和执行效率。1.介绍MATLAB路径管理主要包括以下内容:路径:MATLAB查找文件的目录列表。当前文件夹:MATLAB当前工作目录。路径操作:添加、删除、保存和加载路径。路径函数:addpath,rmpath,genpath,s
- AI大模型如何赋能电商行业,引领变革
虞书欣的C
人工智能开发语言
•个性化推荐:利用机器学习算法分析用户的历史购买记录、浏览行为和喜好,生成个性化的产品推荐列表,提升用户的购买意愿和满意度。•优化用户体验:•智能搜索引擎:运用自然语言处理技术,优化搜索引擎,让用户能够通过自然语言进行搜索。•虚拟客服:通过聊天机器人和语音助手,提供24/7的客户支持,快速解答用户咨询。•图像识别:利用计算机视觉技术,用户可以通过拍照识别商品,快速找到相似商品或进行排版搭配推荐。•
- python爬虫 短视频平台数据抓取:抓取视频和评论
Python爬虫项目
2025年爬虫实战项目python爬虫音视频网络爬虫开发语言
随着短视频平台如抖音、快手、TikTok等的兴起,越来越多的内容创作者和观众通过短视频平台分享和观看视频内容。短视频平台包含了丰富的数据,如视频内容、评论、点赞数、分享数等,这些数据对市场分析、用户行为分析、视频推荐算法等方面具有重要意义。抓取这些数据可以帮助我们获取平台的动态信息,为数据分析提供基础。本文将详细介绍如何使用Python编写爬虫抓取短视频平台上的视频和评论数据,包括技术栈选择、爬虫
- pythonsvm模型优化_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39878698
pythonsvm模型优化
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 差分进化算法_Python进化算法工具箱的使用(三)用进化算法优化SVM参数
weixin_39747075
差分进化算法
前言自从上两篇博客详细讲解了Python遗传和进化算法工具箱及其在带约束的单目标函数值优化中的应用以及利用遗传算法求解有向图的最短路径之后,我经过不断学习工具箱的官方文档以及对源码的研究,更加掌握如何利用遗传算法求解更多有趣的问题了。与前面的文章不同,本篇采用差分进化算法来优化SVM中的参数C和Gamma。(用遗传算法也可以,下面会给出效果比较)首先简单回顾一下Python高性能实用型遗传和进化算
- 径向基函数网络(RBF):让数据“点亮”神经网络的“灯塔”
ningaiiii
机器学习与深度学习神经网络php人工智能
径向基函数网络(RBF):让数据“点亮”神经网络的“灯塔”1.引言径向基函数网络(RadialBasisFunctionNetwork,RBF)是一种特殊的前馈神经网络,它的核心思想是通过“灯塔”来照亮数据的分布。RBF网络使用径向基函数(如高斯函数)作为隐层神经元的激活函数,能够快速学习数据的局部特征,特别适合分类和函数逼近问题。2.算法原理2.1网络结构RBF网络的基本组成包括:输入层:接收原
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那