以太网设计FAQ:以太网MAC和PHY


以太网PHY和MAC对应OSI模型的两个层――物理层和数据链路层。
物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数据链路层设备提供标准接口(RGMII / GMII / MII)。
数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等功能。
问:以太网PHY是什么?
答:PHY是物理接口收发器,它实现物理层。IEEE-802.3标准定义了以太网PHY。它符合IEEE-802.3k中用于10BaseT(第14条)和100BaseTX(第24条和第25条)的规范。
问:以太网MAC是什么?
答:MAC就是媒体接入控制器。以太网MAC由IEEE-802.3以太网标准定义。它实现了一个数据链路层。最新的MAC同时支持10/100/1000Mbps速率。通常情况下,它实现MII/GMII/RGMII接口,来同行业标准PHY器件实现接口。

问:什么是MII?
答:MII(Medium Independent Interface)即媒体独立接口。它是IEEE-802.3定义的以太网行业标准。它包括一个数据接口,以及一个MAC和PHY之间的管理接口。数据 接口包括分别用于发送器和接收器的两条独立信道。每条信道都有自己的数据、时钟和控制信号。MII数据接口总共需要16个信号。管理接口是个双信号接口: 一个是时钟信号,另一个是数据信号。通过管理接口,上层能监视和控制PHY。
MII标准接口 用于连快Fast Ethernet MAC-block与PHY。“介质无关”表明在不对MAC硬件重新设计或替换的情况下,任何类型的PHY设备都可以正常工作。在其他速率下工作的与 MII等效的接口有:AUI(10M 以太网)、GMII(Gigabit 以太网)和XAUI(10-Gigabit 以太网)。
此外还有RMII(Reduced MII)、GMII(Gigabit MII)、RGMII(Reduced GMII)SMII等。所有的这些接口都从MII而来,MII是(Medium Independent Interface)的意思,是指不用考虑媒体是铜轴、光纤、电缆等,因为这些媒体处理的相关工作都有PHY或者叫做MAC的芯片完成。
    MII支持10兆和100兆的操作,一个接口由14根线组成,它的支持还是比较灵活的,但是有一个缺点是因为它一个端口用的信号线太多,如果一个8端口的 交换机要用到112根线,16端口就要用到224根线,到32端口的话就要用到448根线,一般按照这个接口做交换机,是不太现实的,所以现代的交换机的 制作都会用到其它的一些从MII简化出来的标准,比如RMII、SMII、GMII等。
    RMII是简化的MII接口,在数据的收发上它比MII接口少了一倍的信号线,所以它一般要求是50兆的总线时钟。RMII一般用在多端口的交换机,它不 是每个端口安排收、发两个时钟,而是所有的数据端口公用一个时钟用于所有端口的收发,这里就节省了不少的端口数目。RMII的一个端口要求7个数据线,比 MII少了一倍,所以交换机能够接入多一倍数据的端口。和MII一样,RMII支持10兆和100兆的总线接口速度。
    SMII是由思科提出的一种媒体接口,它有比RMII更少的信号线数目,S表示串行的意思。因为它只用一根信号线传送发送数据,一根信号线传输接受数据, 所以在时钟上为了满足100的需求,它的时钟频率很高,达到了125兆,为什么用125兆,是因为数据线里面会传送一些控制信息。SMII一个端口仅用4 根信号线完成100信号的传输,比起RMII差不多又少了一倍的信号线。SMII在工业界的支持力度是很高的。同理,所有端口的数据收发都公用同一个外部 的125M时钟。
    GMII是千兆网的MII接口,这个也有相应的RGMII接口,表示简化了的GMII接口。

MII总线
在IEEE802.3中规定的MII总线是一种用于将不同类型的PHY与相同网络控制器(MAC)相连接的通用总线。网络控制器可以用同样的硬件接口与任何PHY 。
GMII (Gigabit MII)

GMII采用 8位接口数据,工作时钟125MHz,因此传输速率可达 1000Mbps。同时 兼容MII所规定的10/100 Mbps工作方式。
GMII接口数据结构符合IEEE以太网标准。该接口定义见IEEE 802.3-2000。
发送器
◇ GTXCLK――吉比特TX..信号的时钟信号(125MHz)
◇ TXCLK――10/100M信号时钟
◇ TXD[7..0]――被发送数据
◇ TXEN――发送器使能信号
◇ TXER――发送器错误(用于破坏一个数据包)
注:在千兆速率下,向PHY提供GTXCLK信号,TXD、TXEN、TXER信号与此时钟信号同步。否则,在10/100M速率下,PHY提供TXCLK时钟信号,其它信号与此信号同步。其工作频率为25MHz(100M网络)或2.5MHz(10M网络)。
接收器:
◇ RXCLK――接收时钟信号(从收到的数据中提取,因此与GTXCLK无关联)
◇ RXD[7..0]――接收数据
◇ RXDV――接收数据有效指示
◇ RXER――接收数据出错指示
◇ COL――冲突检测(仅用于半双工状态)
管理配置
◇ MDC――配置接口时钟
◇ MDIO――配置接口I/O
管理配置接口控制PHY的特性。该接口有32个寄存器地址,每个地址16位。其中前16个已经在“IEEE 802.3,2000-22.2.4 Management Functions”中规定了用途,其余的则由各器件自己指定。
RMII:       Reduced Media Independant Interface
简化媒体独立接口
是标准的以太网接口之一,比MII有更少的I/O传输。

关于RMII口和MII口的问题
RMII口是用两根线来传输数据的,
MII口是用4根线来传输数据的,
GMII是用8根线来传输数据的。
MII/RMII只是一种接口,对于10M线速,MII的速率是2.5M,RMII则是5M;对于100M线速,MII的速率是25M,RMII则是50M。

MII/RMII用于传输以太网包,在MII/RMII接口是4/2bit的,在以太网的PHY里需要做串并转换、编解码等才能在双绞线和光纤上进行传 输,其帧格式遵循IEEE 802.3(10M)/IEEE 802.3u(100M)/IEEE 802.1q(VLAN)。
以太网帧的格式为:前导符+开始位+目的mac地址+源mac地址+类型/长度+数据+padding(optional)+32bitCRC
如果有vlan,则要在类型/长度后面加上2个字节的vlan tag,其中12bit来表示vlan id,另外4bit表示数据的优先级!
吉比特以太网物理层协议及接口
吉比特以太网协议的数据链路层与传统的10/100Mb/s以太网协议相同,但物理层有所不同。三种协议与OSI七层模型的对应关系如图所示。
从图可以看出,吉比特以太网协议与10/100Mb/s以太网协议的差别仅仅在于物理层。图中的PHY表示实现物理层协议的芯片;协调子层 (Reconciliation sublayer)用于实现指令转换;MII(介质无关接口)/GMII(吉比特介质无关接口)是物理层芯片与实现上层协议的芯片的接口;MDI(介质相 关接口)是物理层芯片与物理介质的接口;PCS、PMA和PMD则分别表示实现物理层协议的各子层。在实际应用系统中,这些子层的操作细节将全部由PHY 芯片实现,只需对MII和MDI接口进行设计与操作即可。
吉比特以太网的物理层接口标准主要有四种:GMII、RGMII(Reduced GMII)、TBI(Ten-Bit Interface)和RTBI(Reduced TBI)。GMII是标准的吉比特以太网接口,它位于MAC层与物理层之间。对于TBI接口,图1中PCS子层的功能将由MAC层芯片实现,在降低PHY 芯片复杂度的同时,控制线也比GMII接口少。RGMII和RTBI两种接口使每根数据线上的传输速率加倍,数据线数目减半。
网卡
PHY和MAC是网卡的主要组成部分,网卡一般用RJ-45插口,10M网卡的RJ-45插口也只用了1、2、3、6四根针,而100M或 1000M网卡的则是八根针都是全的。除此以外,还需要其它元件,因为虽然PHY提供绝大多数模拟支持,但在一个典型实现中,仍需外接6、7只分立元件及 一个局域网绝缘模块。绝缘模块一般采用一个1:1的变压器。这些部件的主要功能是为了保护PHY免遭由于电气失误而引起的损坏。
网卡的功能主要有两个:一是将电脑的数据封装为帧,并通过网线(对无线网络来说就是电磁波)将数据发送到网络上去;二是接收网络上其它设备传过来的 帧,并将帧重新组合成数据,发送到所在的电脑中。网卡能接收所有在网络上传输的信号,但正常情况下只接受发送到该电脑的帧和广播帧,将其余的帧丢弃。然 后,传送到系统CPU做进一步处理。当电脑发送数据时,网卡等待合适的时间将分组插入到数据流中。接收系统通知电脑消息是否完整地到达,如果出现问题,将 要求对方重新发送。

网卡的MAC和PHY
网卡工作在osi的最后两层,物理层和数据链路层,物理层定义了数据传送与接收所需要的电与光信号、线路状态、时钟基准、数据编码和电路等,并向数 据链路层设备提供标准接口。物理层的芯片称之为PHY。数据链路层则提供寻址机构、数据帧的构建、数据差错检查、传送控制、向网络层提供标准的数据接口等 功能。以太网卡中数据链路层的芯片称之为MAC控制器。很多网卡的这两个部分是做到一起的。他们之间的关系是pci总线接mac总线,mac接 phy,phy接网线(当然也不是直接接上的,还有一个变压装置)。


PHY和MAC之间是如何传送数据和相互沟通的。通过IEEE定义的标准的MII/GigaMII(Media Independed Interfade,介质独立界面)界面连接MAC和PHY。这个界面是IEEE定义的。MII界面传递了网络的所有数据和数据的控制。

问:如何实现单片以太网微控制器?
答:诀窍是将微控制器、以太网 媒体接入控制器( MAC)和 物理接口收发器( PHY)整合进同一芯片,这样能去掉许多外接元器件。这种方案可使MAC和PHY实现很好的匹配,同时还可减小引脚数、缩小芯片面积。单片以太网微控制器还降低了功耗,特别是在采用掉电模式的情况下。



问:造成以太网MAC和PHY单片整合难度高的原因是什么?
答:PHY整合了大量模拟硬件,而MAC是典型的全数字器件。芯片面积及模拟/数字混合架构是为什么先将MAC集成进微控制器而将PHY留在片外的原因。更灵活、密度更高的芯片技术已经可以实现MAC和PHY的单芯片整合。
问: 除RJ-45接口外,还需要其它元件吗?
答:需要其它元件。虽然PHY提供绝大多数模拟支持,但在一个典型实现中,仍需外接6、7只分立元件及一个局域网绝缘模块。绝缘模块一般采用一个1:1的变压器。这些部件的主要功能是为了保护PHY免遭由于电气失误而引起的损坏。
问:10BaseT和100BaseTX PHY实现方式不同的原因何在?
答:两种实现的分组描述本质上是一样的,但两者的信令机制完全不同。其目的是阻止一种硬件实现容易地处理两种速度。10BaseT采用曼彻斯特编码,100BaseTX采用4B/5B编码。
问:什么是曼彻斯特编码?
答:曼彻斯特编码又称曼彻斯特相位编码,它通过相位变化来实现每个位(图2)。通常,用一个时钟周期中部的上升沿表示“1”,下降沿表示“0”。周期末端的相位变化可忽略不计,但有时又可能需要将这种相位变化计算在内,这取决于前一位的值。


问:什么是4B/5B编码?
答:4B/5B编码是一种块编码方式。它将一个4位的块编码成一个5位的块。这就使5位块内永远至少包含2个“1”转换,所以在一个5位块内总能进行时钟同步。该方法需要25%的额外开销。
作者:William Wong,嵌入式/系统/软件编辑,《Electronic Design》

你可能感兴趣的:(职场,休闲)