- 【Docker基础】Docker容器管理:docker stats及其参数详解
IT成长日记
容器技术深度解析与实践docker容器运维dockerstats
目录1Docker监控概述2dockerstats基本用法2.1基本命令格式2.2常用操作示例3dockerstats参数详解3.1常用参数说明3.2输出字段解析3.3格式化输出示例4dockerstats工作原理4.1监控数据采集流程4.2数据源解析5常见问题解答5.1为什么CPU使用率会超过100%?5.2内存统计中的cache/buffer包含在哪里?5.3如何监控已停止的容器?6总结1Do
- CentOS网络配置与管理完全指南
Sally璐璐
运维运维centos
1.网络状态查看与诊断1.1ifconfig命令(传统方式)#安装net-tools(CentOS7/8默认可能未安装)sudoyuminstallnet-tools-y#基础查看命令ifconfig#显示所有接口的IP、MAC、收发包统计等完整信息ifconfigeth0#查看eth0网卡的详细状态,包括:#-RX/TXpackets:收发包数量#-errors/dropped:错误和丢包统计#
- Python实例题:基于遗传算法的旅行商问题求解
狐凄
实例python开发语言
目录Python实例题题目要求:解题思路:代码实现:Python实例题题目基于遗传算法的旅行商问题求解要求:使用遗传算法解决旅行商问题(TSP)。支持以下功能:随机生成城市坐标或导入预定义城市实现遗传算法的基本操作(选择、交叉、变异)可视化进化过程和最终路径统计进化过程中的适应度变化允许用户调整遗传算法参数(种群大小、迭代次数、交叉率、变异率等)。解题思路:用列表表示城市访问顺序作为染色体。使用欧
- WebRTC(十一):RTCP和SRTCP
却道天凉_好个秋
WebRTCwebrtc
RTCP基本概念RTCP是RTP的控制协议,用于监控媒体传输质量和参与者状态,并与RTP一起工作。RTP用于传输媒体数据(如音视频),RTCP则用于传输控制信息。RTCP通常和RTP同时使用,并通过不同端口(通常RTP使用偶数端口,RTCP使用其下一个奇数端口)。主要用于:传输质量反馈:丢包率、时延、抖动等统计信息。媒体源身份识别:包括CNAME(CanonicalName)标识每个参与者。带宽控
- 推荐算法特征工程实战:用户与物料动态画像构建指南
Jay Kay
推荐算法推荐算法算法机器学习
在推荐系统的特征工程中,动态画像是提升推荐精准性的核心武器。通过捕捉用户行为偏好和物料热度变化,算法能实现千人千面的精准推荐。本文结合两张关键图表,深入解析动态画像的构建方法与工程实践。一、用户动态画像:六大维度精准刻画兴趣偏好用户动态画像基于六个关键维度构建(如表2-1所示),形成"6W"行为模型:用户粒度物料属性时间粒度动作类型统计对象统计方法1.核心维度解析(附典型场景)维度可选值应用场景用
- 因果推理与因果学习原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
因果推理与因果学习原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:因果关系发现、因果推断、因果学习、机器学习、统计方法1.背景介绍1.1问题的由来在现实世界的数据分析中,我们经常面临这样的挑战:从观察数据中识别出潜在的原因与效果之间的关联,并理解这些关联背后的实际机制。传统的预测建模关注于基于输入变量对输出变量进行预测,
- R 语言简介:数据分析与统计的强大工具
Mikhail_G
python数据分析大数据r语言开发语言
大家好!在如今这个数据驱动的时代,数据分析与统计分析对于各个领域都变得至关重要。而R语言,作为一款专为数据分析和统计而设计的编程语言,以其强大的功能和灵活性,成为了众多数据分析师、研究人员以及统计学家的首选工具之一。什么是R语言?R是一种开源的编程语言和软件环境,主要用于统计计算、数据分析、图形表示以及机器学习等领域。它是由RossIhaka和RobertGentleman于1995年开发的,之后
- 从 “啃书焦虑” 到 “项目通关”:NLP 学习的破局之道
木旭林晖
自然语言处理学习人工智能
嘿,你好。在CSDN上潜水这么久,我总能看到很多像你我当年一样,怀揣着NLP大厂梦的同学。我猜,你的收藏夹里一定塞满了“NLP必读清单”,书架上可能还放着那本厚得像砖头一样的《统计学习方法》或者“龙书”。每天深夜,你可能都在跟一个又一个复杂的数学公式死磕。什么最大熵模型、什么CRF(条件随机场)的推导……你觉得自己离“精通”越来越近,但心里却越来越慌。为什么慌?因为你打开招聘软件,看到JD(职位描
- Redis(十五)Bitmap、Hyperloglog、GEO案例、布隆过滤器
Lucky_Turtle
Javaredis面试数据库
文章目录面试题常见统计类型聚合统计排序统计二值统计基数统计Hyperloglog专有名词UV(UniqueVisitor)独立访客PV(PageView)页面浏览量DAU(DailyActiveUser)日活跃用户量MAU(MonthlyActiveUser)需求原理亿级UV的Redis统计方案GEO面试题命令GEOADD获取某位置的经纬度GEOPOS返回坐标的Geohash表示GEOHASH两个
- 算法优化:前缀和+哈希表
雨声敲敲,风声潇潇
算法算法javaleetcode性能优化哈希表
今天在leetcode上写到6952.统计趣味子数组的数目这道题的时候出现了超时问题,由此学习了前缀和+哈希表的方法。目前看到与此知识点相关的题目有如下:560.和为k的子数组,非常经典的前缀和+哈希表,可以从这一道题入手。6952.统计趣味子数组的数目,这道题比上一到稍微难一点,但是不至于困难。下面介绍一下前缀和+哈希表以560题为例,题目:给你一个整数数组nums和一个整数k,请你统计并返回该
- 7个国产操作系统,你都熟悉吗?
wljslmz
网络技术国产系统
在全球科技竞争加剧的背景下,操作系统作为信息产业的核心“灵魂”,其重要性不言而喻。长期以来,Windows、macOS和Android等国外操作系统主导着全球市场,但它们在某些场景下的封闭性和潜在安全风险,让中国开始加速自主操作系统的研发。尤其是2014年WindowsXP停止支持和2020年Windows7停止服务后,国内对自主操作系统的需求进一步凸显。据统计,2025年中国操作系统市场规模预计
- python ks值计算_风控模型中的K-S理解以及python实现
weixin_39747293
pythonks值计算
笔者在工作中计算单变量的ks值时,发现几个分布不同的变量好y计算的ks值相同,凭借统计直觉,发现一定存在问题,笔者从数据和计算ks代码两个方向进行排除。最后定位到计算使用stats.ks_2samp()函数计算ks值时,如果变量存在缺失值,计算得到ks值有误,下面笔者就来好好梳理一下ks值的前世今生。ks检验介绍笔者刚入门机器学习开始做的例子就是金融场景下风控模型。那时评价模型的好坏就用传统的机器
- 经济学神图:洛伦兹曲线
大千AI助手
人工智能Python#OTHER决策树人工智能DecisionTree算法洛伦兹曲线基尼
洛伦兹曲线(LorenzCurve)是衡量社会收入或财富分配不平等程度的经典可视化工具,由美国统计学家马克斯·洛伦兹(MaxOttoLorenz)于1905年提出。它不仅是理解基尼系数的核心基础,也是经济学、社会学中分析资源分配公平性的关键图表。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!往期文
- 对照原则在临床试验中的应用与挑战
一、对照原则的科学逻辑1.1核心目的1.1.1区分混杂效应通过对照组设置,区分疾病自然进程、安慰剂效应、回归均值现象及非特异性效应等混杂因素,凸显干预措施的真实疗效。1.2统计本质1.2.1真实疗效计算真实疗效=(干预组终点变化-干预组基线)-(对照组终点变化-对照组基线),通过组间比较抵消共同偏倚。二、对照组的五大类型及适用场景2.1安慰剂对照2.1.1构成外观/用法相同的无活性物质。2.1.2
- 随机化在临床试验中的应用与挑战
qq_34062333
临床试验统计学
一、随机化的核心目的1.1控制混杂偏倚1.1.1平衡预后因素确保已知/未知预后因素在组间分布均衡,避免基线不平衡影响结果。1.1.2避免选择偏倚防止研究者或患者主观选择分组,保障组间差异归因于干预。1.2保障统计推断有效性1.2.1满足独立性假设满足统计检验的独立性假设,使统计推断有效。1.2.2实现盲法基础为双盲实施提供先决条件,确保试验结果无偏。二、随机化类型与技术实现2.1简单随机化2.1.
- 重复原则与样本量估计:临床试验的统计引擎
qq_34062333
临床试验统计学
一、重复原则的科学内涵1.1核心目的1.1.1量化随机误差通过足够样本量估计效应值的波动范围,确保结果可重现。1.1.2避免偶然性结论避免因小样本极端结果导致的偶然性结论,确保结论稳健。1.1.3提升外推性覆盖人群异质性,提升研究结果的外推性。1.2统计学本质1.2.1标准误样本量增加,标准误减小,置信区间变窄,精度提高。二、样本量估计的四大核心参数2.1显著性水平(α)2.1.1定义I类错误概率
- 临床试验评价指标解析
qq_34062333
临床试验统计学
一、主要疗效终点1.1生存类终点1.1.1总生存期(OS)定义:随机至全因死亡的时间统计方法:Kaplan-Meier,Cox模型优势/局限:金标准,无测量偏倚;但需大样本长随访1.1.2无进展生存期(PFS)定义:随机至疾病进展/死亡的时间统计方法:同上优势/局限:敏感、不受后续治疗影响;但评估易受主观性干扰1.1.3客观缓解率(ORR)定义:肿瘤缩小≥30%的患者比例(RECIST标准)统计方
- 使用大模型预测心力衰竭的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录1.引言背景与意义目标2.术前风险评估与预测数据采集与预处理风险预测模型输出应用3.术中风险实时监测与预警实时数据流处理动态风险预测4.术后恢复与并发症预测恢复轨迹建模并发症防控5.个性化治疗方案制定6.统计分析与模型验证验证方法性能指标7.健康教育与指导方案8.技术架构与实施路径1.引言背景与意义问题现状:心力衰竭(HF)全球患者超千万,中国25岁以上人群患病率1.1%;传统诊疗漏诊率高,预
- spring05-Spring核心:AOP面向切面编程
ruleslol
springspring
一、什么是AOP?AOP是为了解决“横切关注点”问题的一种编程范式。在一个项目中,有很多功能不是业务核心逻辑,但又会反复出现在多个地方,例如:日志记录权限校验登录状态检查统计耗时异常处理这些逻辑与“业务方法”不在一个维度上,但又必须“附着在”业务方法上。AOP就是用来把这些“通用功能”抽出来,统一管理和复用的。1、案例背景有一个登录流程,希望在不修改源代码的情况下,添加权限判断模块,使得用户在校验
- 【头歌】MapReduce基础实战 答案
Seven_Two2
头歌大数据实验答案c#开发语言
本专栏已收集大数据所有答案第1关:成绩统计编程要求使用MapReduce计算班级每个学生的最好成绩,输入文件路径为/user/test/input,请将计算后的结果输出到/user/test/output/目录下。答案:需要先在命令行启动HDFS#命令行start-dfs.sh再在代码文件中写入以下代码#代码文件importjava.io.IOException;importjava.util.S
- 计算机操作系统(十六)进程同步
珹洺
#计算机操作系统算法运维
计算机操作系统计算机操作系统(十六)进程同步前言一、进程同步问题1.1什么是进程?1.2为什么需要同步?二、从信号到信号量2.1什么是信号?2.2信号量的诞生三、临界区:不能多人同时进的"小房间"3.1什么是临界区?3.2临界区的规则3.3为什么需要临界区?四、信号量的实现与使用4.1信号量的核心操作4.2用信号量实现互斥(二元信号量)4.3用信号量实现同步(计数信号量)五、经典同步问题5.1生产
- 基于Java+Vue的数字化人力资源管理系统,高效整合数据,赋能企业人力精细化管理
软件源码专题社区
源码共享软件工程javamysqlvue源代码管理
前言:在当今数字化浪潮席卷的时代,企业对于人力资源管理的效率和精准度提出了更高要求。传统的人力资源管理模式已难以满足企业快速发展的需求,繁琐的手工操作、信息传递不及时、数据统计不准确等问题,严重制约了企业人力资源管理的效能。数字化人力资源管理系统的出现,为企业提供了一种全新的解决方案,它借助先进的信息技术,将人力资源管理的各个环节进行整合和优化,实现人力资源管理的自动化、智能化和精细化,从而提升企
- 智能体综述和参考资料整理
木鱼时刻
大模型人工智能
目录总体介绍核心组件记忆系统工具系统计划与推理开发框架Single-AgentMulti-Agent智能体平台技术实现通信协议角色系统对话记忆MCP协议参考链接总体介绍智能体(AIAgents)是人工智能领域的重要发展方向,它们能够通过传感器感知环境并通过执行器对环境采取行动。根据罗素和诺维格在《人工智能:一种现代方法》(2016年)中的定义,AIAgent是任何可以通过传感器感知其环境并通过执行
- Redis在企业实战开发中的核心作用:从缓存到分布式系统的关键支柱
LambdaCat
缓存redisjava
在高并发、分布式系统成为主流的今天,Redis已成为企业技术栈中不可或缺的组件。据2024年最新统计,超过82%的互联网企业在生产环境中使用Redis,处理着每秒数十万甚至上百万级的请求在现代软件开发领域,高性能、高并发和可扩展性已成为系统设计的核心要求。面对海量用户和实时数据处理需求,传统数据库在性能方面逐渐显现瓶颈。正是在这样的背景下,Redis(RemoteDictionaryServer)
- 基于YOLOv5的监控摄像头遮挡检测系统:从数据集到UI界面的完整实现
芯作者
D2:YOLOYOLO神经网络
实时守护监控设备安全,智能识别遮挡攻击的AI解决方案一、问题背景与系统价值在安防监控领域,摄像头遮挡是常见的恶意攻击手段——统计显示35%的安防失效源于摄像头被遮挡。传统方案依赖人工巡查,效率低下且响应延迟。本文将带你构建完整的AI遮挡检测系统,核心创新点:双模检测机制:YOLOv5目标检测+背景建模异常分析轻量化部署:模型量化压缩至1.8MB动态学习:运行时自动更新异常样本库二、系统架构设计[视
- 2000-2020年 全国地级市供水量、电力消费、煤气、天然气供量、液化石油气供量统计数据
小王毕业啦
大数据人工智能数据分析数据挖掘大数据社科数据数据统计深度学习
全国地级市供水量、电力消费、煤气、天然气供量、液化石油气供量统计数据2000-2020年.z.ziphttps://download.csdn.net/download/2401_84585615/89919939全国地级市的供水量、电力消费、煤气、天然气供量以及液化石油气供量的统计数据,涵盖了2000年至2020年的数据,为研究城市基础设施建设和能源消耗提供了重要的参考依据。这些数据不仅反映了各
- 随机近似算法:步长序列选择的理论与金融实践
随机近似算法:步长序列选择的理论与金融实践摘要随机近似算法作为统计学习与优化的核心工具,其收敛性与稳定性高度依赖步长序列的设计。本文系统阐述步长序列的理论约束与工程选择策略,并结合金融波动率估计场景,展示算法在动态系统参数估计中的实践价值。1.随机近似算法的数学框架随机近似算法通过随机样本的迭代更新逼近目标参数,其核心迭代式为:θn+1=θn+an(Yn−g(θn))\theta_{n+1}=\t
- 数组中出现次数超过一半的数字
hixiaoyang
python算法数据结构
问题描述给定一个大小为n的数组,找出其中出现次数超过⌊n/2⌋的元素(即多数元素)。假设数组非空,且多数元素一定存在。关键结论:多数元素出现的次数比其他所有元素出现次数之和还要多常见解法分析1.哈希表统计法核心思想:使用哈希表统计每个数字出现的次数,当某个数字的计数超过n/2时立即返回。时间复杂度分析时间复杂度:O(n)空间复杂度:O(n)java实现publicintmajorityElemen
- 机器视觉_图像算法(六)——形状矩(Hu)
智能之心
#机器视觉_图像算法形状矩opencv
图像形状矩:一个从一幅数字图形中计算出来的矩集,通常描述了该图像形状的全局特征,并提供了大量的关于该图像不同类型的几何特性信息,比如大小、位置、方向及形状等。一阶矩与形状有关,二阶矩显示曲线围绕直线平均值的扩展程度,三阶矩则是关于平均值的对称性的测量。由二阶矩和三阶矩可以导出一组共7个不变矩。而不变矩是图像的统计特性,满足平移、伸缩、旋转均不变的不变性,在图像识别领域得到了广泛的应用。一般由mom
- ACM ICPC 2017 Warmup Contest 7(CTU Open Contest 2016)
Owen_Q
水题搜索数组stlacm
ccsp与区域赛都越来越近了,模拟与区域赛题并进,还有一堆作业,有点累,想玩耍,感觉自己有点迷失,算了,还是就这样吧,努力向前练习赛7,打两个签到题走人,继续刷csp去B.HotAirBallooning思路:统计不同人用过的气球的方案数,又是个去重问题,又想往set上放,后来发现气球数很少,完全可以数组统计,而气球总组合有限,虽然不大,但强搜可能会感觉tle,加个状压好了,感觉现在自己特别喜欢做
- mysql主从数据同步
林鹤霄
mysql主从数据同步
配置mysql5.5主从服务器(转)
教程开始:一、安装MySQL
说明:在两台MySQL服务器192.168.21.169和192.168.21.168上分别进行如下操作,安装MySQL 5.5.22
二、配置MySQL主服务器(192.168.21.169)mysql -uroot -p &nb
- oracle学习笔记
caoyong
oracle
1、ORACLE的安装
a>、ORACLE的版本
8i,9i : i是internet
10g,11g : grid (网格)
12c : cloud (云计算)
b>、10g不支持win7
&
- 数据库,SQL零基础入门
天子之骄
sql数据库入门基本术语
数据库,SQL零基础入门
做网站肯定离不开数据库,本人之前没怎么具体接触SQL,这几天起早贪黑得各种入门,恶补脑洞。一些具体的知识点,可以让小白不再迷茫的术语,拿来与大家分享。
数据库,永久数据的一个或多个大型结构化集合,通常与更新和查询数据的软件相关
- pom.xml
一炮送你回车库
pom.xml
1、一级元素dependencies是可以被子项目继承的
2、一级元素dependencyManagement是定义该项目群里jar包版本号的,通常和一级元素properties一起使用,既然有继承,也肯定有一级元素modules来定义子元素
3、父项目里的一级元素<modules>
<module>lcas-admin-war</module>
<
- sql查地区省市县
3213213333332132
sqlmysql
-- db_yhm_city
SELECT * FROM db_yhm_city WHERE class_parent_id = 1 -- 海南 class_id = 9 港、奥、台 class_id = 33、34、35
SELECT * FROM db_yhm_city WHERE class_parent_id =169
SELECT d1.cla
- 关于监听器那些让人头疼的事
宝剑锋梅花香
画图板监听器鼠标监听器
本人初学JAVA,对于界面开发我只能说有点蛋疼,用JAVA来做界面的话确实需要一定的耐心(不使用插件,就算使用插件的话也没好多少)既然Java提供了界面开发,老师又要求做,只能硬着头皮上啦。但是监听器还真是个难懂的地方,我是上了几次课才略微搞懂了些。
- JAVA的遍历MAP
darkranger
map
Java Map遍历方式的选择
1. 阐述
对于Java中Map的遍历方式,很多文章都推荐使用entrySet,认为其比keySet的效率高很多。理由是:entrySet方法一次拿到所有key和value的集合;而keySet拿到的只是key的集合,针对每个key,都要去Map中额外查找一次value,从而降低了总体效率。那么实际情况如何呢?
为了解遍历性能的真实差距,包括在遍历ke
- POJ 2312 Battle City 优先多列+bfs
aijuans
搜索
来源:http://poj.org/problem?id=2312
题意:题目背景就是小时候玩的坦克大战,求从起点到终点最少需要多少步。已知S和R是不能走得,E是空的,可以走,B是砖,只有打掉后才可以通过。
思路:很容易看出来这是一道广搜的题目,但是因为走E和走B所需要的时间不一样,因此不能用普通的队列存点。因为对于走B来说,要先打掉砖才能通过,所以我们可以理解为走B需要两步,而走E是指需要1
- Hibernate与Jpa的关系,终于弄懂
avords
javaHibernate数据库jpa
我知道Jpa是一种规范,而Hibernate是它的一种实现。除了Hibernate,还有EclipseLink(曾经的toplink),OpenJPA等可供选择,所以使用Jpa的一个好处是,可以更换实现而不必改动太多代码。
在play中定义Model时,使用的是jpa的annotations,比如javax.persistence.Entity, Table, Column, OneToMany
- 酸爽的console.log
bee1314
console
在前端的开发中,console.log那是开发必备啊,简直直观。通过写小函数,组合大功能。更容易测试。但是在打版本时,就要删除console.log,打完版本进入开发状态又要添加,真不够爽。重复劳动太多。所以可以做些简单地封装,方便开发和上线。
/**
* log.js hufeng
* The safe wrapper for `console.xxx` functions
*
- 哈佛教授:穷人和过于忙碌的人有一个共同思维特质
bijian1013
时间管理励志人生穷人过于忙碌
一个跨学科团队今年完成了一项对资源稀缺状况下人的思维方式的研究,结论是:穷人和过于忙碌的人有一个共同思维特质,即注意力被稀缺资源过分占据,引起认知和判断力的全面下降。这项研究是心理学、行为经济学和政策研究学者协作的典范。
这个研究源于穆来纳森对自己拖延症的憎恨。他7岁从印度移民美国,很快就如鱼得水,哈佛毕业
- other operate
征客丶
OSosx
一、Mac Finder 设置排序方式,预览栏 在显示-》查看显示选项中
二、有时预览显示时,卡死在那,有可能是一些临时文件夹被删除了,如:/private/tmp[有待验证]
--------------------------------------------------------------------
若有其他凝问或文中有错误,请及时向我指出,
我好及时改正,同时也让我们一
- 【Scala五】分析Spark源代码总结的Scala语法三
bit1129
scala
1. If语句作为表达式
val properties = if (jobIdToActiveJob.contains(jobId)) {
jobIdToActiveJob(stage.jobId).properties
} else {
// this stage will be assigned to "default" po
- ZooKeeper 入门
BlueSkator
中间件zk
ZooKeeper是一个高可用的分布式数据管理与系统协调框架。基于对Paxos算法的实现,使该框架保证了分布式环境中数据的强一致性,也正是基于这样的特性,使得ZooKeeper解决很多分布式问题。网上对ZK的应用场景也有不少介绍,本文将结合作者身边的项目例子,系统地对ZK的应用场景进行一个分门归类的介绍。
值得注意的是,ZK并非天生就是为这些应用场景设计的,都是后来众多开发者根据其框架的特性,利
- MySQL取得当前时间的函数是什么 格式化日期的函数是什么
BreakingBad
mysqlDate
取得当前时间用 now() 就行。
在数据库中格式化时间 用DATE_FORMA T(date, format) .
根据格式串format 格式化日期或日期和时间值date,返回结果串。
可用DATE_FORMAT( ) 来格式化DATE 或DATETIME 值,以便得到所希望的格式。根据format字符串格式化date值:
%S, %s 两位数字形式的秒( 00,01,
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 4_JAVA+Oracle面试题(有答案)
chenke
oracle
基础测试题
卷面上不能出现任何的涂写文字,所有的答案要求写在答题纸上,考卷不得带走。
选择题
1、 What will happen when you attempt to compile and run the following code? (3)
public class Static {
static {
int x = 5; // 在static内有效
}
st
- 新一代工作流系统设计目标
comsci
工作算法脚本
用户只需要给工作流系统制定若干个需求,流程系统根据需求,并结合事先输入的组织机构和权限结构,调用若干算法,在流程展示版面上面显示出系统自动生成的流程图,然后由用户根据实际情况对该流程图进行微调,直到满意为止,流程在运行过程中,系统和用户可以根据情况对流程进行实时的调整,包括拓扑结构的调整,权限的调整,内置脚本的调整。。。。。
在这个设计中,最难的地方是系统根据什么来生成流
- oracle 行链接与行迁移
daizj
oracle行迁移
表里的一行对于一个数据块太大的情况有二种(一行在一个数据块里放不下)
第一种情况:
INSERT的时候,INSERT时候行的大小就超一个块的大小。Oracle把这行的数据存储在一连串的数据块里(Oracle Stores the data for the row in a chain of data blocks),这种情况称为行链接(Row Chain),一般不可避免(除非使用更大的数据
- [JShop]开源电子商务系统jshop的系统缓存实现
dinguangx
jshop电子商务
前言
jeeshop中通过SystemManager管理了大量的缓存数据,来提升系统的性能,但这些缓存数据全部都是存放于内存中的,无法满足特定场景的数据更新(如集群环境)。JShop对jeeshop的缓存机制进行了扩展,提供CacheProvider来辅助SystemManager管理这些缓存数据,通过CacheProvider,可以把缓存存放在内存,ehcache,redis,memcache
- 初三全学年难记忆单词
dcj3sjt126com
englishword
several 儿子;若干
shelf 架子
knowledge 知识;学问
librarian 图书管理员
abroad 到国外,在国外
surf 冲浪
wave 浪;波浪
twice 两次;两倍
describe 描写;叙述
especially 特别;尤其
attract 吸引
prize 奖品;奖赏
competition 比赛;竞争
event 大事;事件
O
- sphinx实践
dcj3sjt126com
sphinx
安装参考地址:http://briansnelson.com/How_to_install_Sphinx_on_Centos_Server
yum install sphinx
如果失败的话使用下面的方式安装
wget http://sphinxsearch.com/files/sphinx-2.2.9-1.rhel6.x86_64.rpm
yum loca
- JPA之JPQL(三)
frank1234
ormjpaJPQL
1 什么是JPQL
JPQL是Java Persistence Query Language的简称,可以看成是JPA中的HQL, JPQL支持各种复杂查询。
2 检索单个对象
@Test
public void querySingleObject1() {
Query query = em.createQuery("sele
- Remove Duplicates from Sorted Array II
hcx2013
remove
Follow up for "Remove Duplicates":What if duplicates are allowed at most twice?
For example,Given sorted array nums = [1,1,1,2,2,3],
Your function should return length
- Spring4新特性——Groovy Bean定义DSL
jinnianshilongnian
spring 4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装Mysql5.5
liuxingguome
centos
CentOS下以RPM方式安装MySQL5.5
首先卸载系统自带Mysql:
yum remove mysql mysql-server mysql-libs compat-mysql51
rm -rf /var/lib/mysql
rm /etc/my.cnf
查看是否还有mysql软件:
rpm -qa|grep mysql
去http://dev.mysql.c
- 第14章 工具函数(下)
onestopweb
函数
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- POJ 1050
SaraWon
二维数组子矩阵最大和
POJ ACM第1050题的详细描述,请参照
http://acm.pku.edu.cn/JudgeOnline/problem?id=1050
题目意思:
给定包含有正负整型的二维数组,找出所有子矩阵的和的最大值。
如二维数组
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
中和最大的子矩阵是
9 2
-4 1
-1 8
且最大和是15
- [5]设计模式——单例模式
tsface
java单例设计模式虚拟机
单例模式:保证一个类仅有一个实例,并提供一个访问它的全局访问点
安全的单例模式:
/*
* @(#)Singleton.java 2014-8-1
*
* Copyright 2014 XXXX, Inc. All rights reserved.
*/
package com.fiberhome.singleton;
- Java8全新打造,英语学习supertool
yangshangchuan
javasuperword闭包java8函数式编程
superword是一个Java实现的英文单词分析软件,主要研究英语单词音近形似转化规律、前缀后缀规律、词之间的相似性规律等等。Clean code、Fluent style、Java8 feature: Lambdas, Streams and Functional-style Programming。
升学考试、工作求职、充电提高,都少不了英语的身影,英语对我们来说实在太重要