大端字节序,小端子节序

 

一、字节序定义

 

字节序,顾名思义字节的顺序,再多说两句就是大于一个字节类型的数据在内存中的存放顺序(一个字节的数据当然就无需谈顺序的问题了)。

其实大部分人在实际的开发中都很少会直接和字节序打交道。唯有在跨平台以及网络程序中字节序才是一个应该被考虑的问题。

在所有的介绍字节序的文章中都会提到字节序分为两类:Big-Endian和Little-Endian。引用标准的Big-Endian和Little-Endian的定义如下:
a) Little-Endian就是低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。
b) Big-Endian就是高位字节排放在内存的低地址端,低位字节排放在内存的高地址端。
c) 网络字节序:4个字节的32 bit值以下面的次序传输:首先是0~7bit,其次8~15bit,然后16~23bit,最后是24~31bit。这种传输次序称作大端字节序。由于 TCP/IP首部中所有的二进制整数在网络中传输时都要求以这种次序,因此它又称作网络字节序。比如,以太网头部中2字节的“以太网帧类型”,表示后面数据的类型。对于ARP请求或应答的以太网帧类型来说,在网络传输时,发送的顺序是0x08,0x06。在内存中的映象如下图所示:
栈底 (高地址)
---------------
0x06 -- 低位 
0x08 -- 高位
---------------
栈顶 (低地址)
该字段的值为0x0806。按照大端方式存放在内存中。

 

二、高/低地址与高低字节

 

首先我们要知道我们C程序映像中内存的空间布局情况:在《C专家编程》中或者《Unix环境高级编程》中有关于内存空间布局情况的说明,大致如下图:
----------------------- 最高内存地址 0xffffffff
 | 栈底
 .
 .              栈
 .
  栈顶
-----------------------
 |
 |
\|/

NULL (空洞)

/|\
 |
 |
-----------------------
                堆
-----------------------
未初始化的数据
----------------(统称数据段)
初始化的数据
-----------------------
正文段(代码段)
----------------------- 最低内存地址 0x00000000

以上图为例如果我们在栈上分配一个unsigned char buf[4],那么这个数组变量在栈上是如何布局的呢[注1]?看下图:
栈底 (高地址)
----------
buf[3]
buf[2]
buf[1]
buf[0]
----------
栈顶 (低地址)

现在我们弄清了高低地址,接着来弄清高/低字节,如果我们有一个32位无符号整型0x12345678(呵呵,恰好是把上面的那4个字节buf看成 一个整型),那么高位是什么,低位又是什么呢?其实很简单。在十进制中我们都说靠左边的是高位,靠右边的是低位,在其他进制也是如此。就拿 0x12345678来说,从高位到低位的字节依次是0x12、0x34、0x56和0x78。

高低地址和高低字节都弄清了。我们再来回顾一下Big-Endian和Little-Endian的定义,并用图示说明两种字节序:
以unsigned int value = 0x12345678为例,分别看看在两种字节序下其存储情况,我们可以用unsigned char buf[4]来表示value:
Big-Endian: 低地址存放高位,如下图:
栈底 (高地址)
---------------
buf[3] (0x78) -- 低位
buf[2] (0x56)
buf[1] (0x34)
buf[0] (0x12) -- 高位
---------------
栈顶 (低地址)

Little-Endian: 低地址存放低位,如下图:
栈底 (高地址)
---------------
buf[3] (0x12) -- 高位
buf[2] (0x34)
buf[1] (0x56)
buf[0] (0x78) -- 低位
---------------
栈顶 (低地址)

在现有的平台上Intel的X86采用的是Little-Endian,而像Sun的SPARC采用的就是Big-Endian。

三、例子

嵌入式系统开发者应该对Little-endian和Big-endian模式非常了解。采用Little-endian模式的CPU对操作数的存放方式是从低字节到高字节,而Big-endian模式对操作数的存放方式是从高字节到低字节。

例如,16bit宽的数0x1234在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:

内存地址  存放内容
 0x4001    0x12
 0x4000    0x34

而在Big-endian模式CPU内存中的存放方式则为:

内存地址  存放内容
 0x4001    0x34
 0x4000    0x12
 
32bit宽的数0x12345678在Little-endian模式CPU内存中的存放方式(假设从地址0x4000开始存放)为:

内存地址  存放内容
 0x4003     0x12
 0x4002     0x34
 0x4001     0x56
 0x4000     0x78
 
而在Big-endian模式CPU内存中的存放方式则为:

内存地址  存放内容
 0x4003     0x78
 0x4002     0x56
 0x4001     0x34
 0x4000     0x12

四、大端小端检测方法:
如何检查处理器是big-endian还是little-endian?
联合体union的存放顺序是所有成员都从低地址开始存放,利用该特性就可以轻松地获得了CPU对内存采用Little-endian还是Big-endian模式读写。
int checkCPUendian()
{
union
{
unsigned int a;
unsigned char b;
}c;
c.a = 1;
return (c.b == 1);
}
/*return 1 : little-endian, return 0:big-endian*/

网络字节顺序

1、字节内的比特位不受这种顺序的影响
比如一个字节 1000 0000 (或表示为十六进制 80H)不管是什么顺序其内存中的表示法都是这样。
2、大于1个字节的数据类型才有字节顺序问题
比如 Byte A,这个变量只有一个字节的长度,所以根据上一条没有字节顺序问题。所以字节顺序是“字节之间的相对顺序”的意思。
3、大于1个字节的数据类型的字节顺序有两种
比如 short B,这是一个两字节的数据类型,这时就有字节之间的相对顺序问题了。
网络字节顺序是“所见即所得”的顺序。而Intel类型的CPU的字节顺序与此相反。
比如上面的 short B=0102H(十六进制,每两位表示一个字节的宽度)。所见到的是“0102”,按一般数学常识,数轴从左到右的方向增加,即内存地址从左到右增加的话,在内存中这个 short B的字节顺序是:
01 02
这就是网络字节顺序。所见到的顺序和在内存中的顺序是一致的!
而相反的字节顺序就不同了,其在内存中的顺序为:02 01
假设通过抓包得到网络数据的两个字节流为:01 02
如果这表示两个 Byte类型的变量,那么自然不需要考虑字节顺序的问题。
如果这表示一个 short 变量,那么就需要考虑字节顺序问题。根据网络字节顺序“所见即所得”的规则,这个变量的值就是:0102
假设本地主机是Intel类型的,那么要表示这个变量,有点麻烦:
定义变量 short X,
字节流地址为:pt,按顺序读取内存是为
x=*((short*)pt);
那么X的内存顺序当然是 01 02
按非“所见即所得”的规则,这个内存顺序和看到的一样显然是不对的,所以要把这两个字节的位置调换。
调换的方法可以自己定义,但用已经有的API还是更为方便。

网络字节顺序与主机字节顺序
NBO与HBO 网络字节顺序NBO(Network Byte Order):按从高到低的顺序存储,在网络上使用统一的网络字节顺序,可以避免兼容性问题。主机字节顺序(HBO,Host Byte Order):不同的机器HBO不相同,与CPU设计有关计算机数据存储有两种字节优先顺序:高位字节优先和低位字节优先。Internet上数据以高位 字节优先顺序在网络上传输,所以对于在内部是以低位字节优先方式存储数据的机器,在Internet上传输数据时就需要进行转换。

htonl()
简述:
    将主机的无符号长整形数转换成网络字节顺序。
    #include <winsock.h>
    u_long PASCAL FAR htonl( u_long hostlong);
    hostlong:主机字节顺序表达的32位数。
注释:
    本函数将一个32位数从主机字节顺序转换成网络字节顺序。
返回值:
    htonl()返回一个网络字节顺序的值。

inet_ntoa()
简述:
将网络地址转换成“.”点隔的字符串格式。
#include <winsock.h>
char FAR* PASCAL FAR inet_ntoa( struct in_addr in);
in:一个表示Internet主机地址的结构。
注释:
本函数将一个用in参数所表示的Internet地址结构转换成以“.” 间隔的诸如“a.b.c.d”的字符串形式。请注意inet_ntoa()返回的字符串存放在WINDOWS套接口实现所分配的内存中。应用程序不应假设 该内存是如何分配的。在同一个线程的下一个WINDOWS套接口调用前,数据将保证是有效。
返回值:
若无错误发生,inet_ntoa()返回一个字符指针。否则的话,返回NULL。其中的数据应在下一个WINDOWS套接口调用前复制出来。

网络中传输的数据有的和本地字节存储顺序一致,而有的则截然不同,为了数据的一致性,就要把本地的数据转换成网络上使用的格式,然后发送出去,接收的时候 也是一样的,经过转换然后才去使用这些数据,基本的库函数中提供了这样的可以进行字节转换的函数,如和htons( ) htonl( ) ntohs( ) ntohl( ),这里n表示network,h表示host,htons( ) htonl( )用于本地字节向网络字节转换的场合,s表示short,即对2字节操作,l表示long即对4字节操作。同样ntohs( )ntohl( )用于网络字节向本地格式转换的场合

你可能感兴趣的:(职场,休闲,字节序,大端,小端,网络字节序)