九线性相关性,向量空间的基,维数Ax=0什么情况下无解(x不为零向量)1.向量组的线性无关性2.向量组生成一个空间(S)3.向量空间的一组基:都满足向量个数相同4.空间维数=基向量的个数Ax=0什么情况下无解(x不为零向量)Ax=0无解,当且仅当,A矩阵通过消元后,转化为单位矩阵,没有自由变量。A的矩阵大小为m∗n,当m
线性代数(13)——向量空间、维度和四大子空间(下)
Jakob_Hu
线性代数
向量空间、维度和四大子空间零空间的基和秩-零化度定理零空间及零空间的基秩-零化度定理列空间与零空间对比零空间与矩阵的逆深入理解零空间左零空间回顾已有的三个子空间第四个子空间研究子空间的意义零空间的基和秩-零化度定理零空间及零空间的基一个齐次线性系统A⋅x=0A\cdotx=0A⋅x=0的解就是对应的系数矩阵的零空间。首先通过一个简单的齐次线性方程组进行演示,(−1231−4−13−354)⟹(10
人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具
学步_技术
自动驾驶人工智能人工智能深度学习自动驾驶机器学习
人工智能深度学习系列—深度解析:交叉熵损失(Cross-EntropyLoss)在分类问题中的应用人工智能深度学习系列—深入解析:均方误差损失(MSELoss)在深度学习中的应用与实践人工智能深度学习系列—深入探索KL散度:度量概率分布差异的关键工具人工智能深度学习系列—探索余弦相似度损失:深度学习中的相似性度量神器人工智能深度学习系列—深度学习中的边界框回归新贵:GHM(GeneralizedH
机器学习数学基础:22.对称矩阵的对角化
@心都
机器学习矩阵概率论
一、核心概念详解(一)内积定义与公式:在nnn维向量空间中,对于向量x⃗=(x1,x2,⋯ ,xn)\vec{x}\=(x_1,x_2,\cdots,x_n)x=(x1,x2,⋯,xn)和y⃗=(y1,y2,⋯ ,yn)\vec{y}\=(y_1,y_2,\cdots,y_n)y=(y1,y2,⋯,yn),内积记作(x⃗,y⃗)(\vec{x},\vec{y})(x,y),其计算公式为(x⃗,y⃗
DeepSeek 学习路线图
CarlowZJ
学习deepseek
以下是基于最新搜索结果整理的DeepSeek学习路线图,涵盖从基础到高级的系统学习路径,帮助你全面掌握DeepSeek的使用和应用开发。一、基础知识与预备技能1.数学基础线性代数:掌握矩阵运算和向量空间,这是深度学习的核心。概率统计:理解贝叶斯理论和概率分布,用于模型训练和推理。微积分:了解优化算法中的梯度下降等概念。2.编程基础Python:掌握Python编程,这是深度学习和AI开发的主要语言
MATLAB之相似性度量的二分类实验
TU不秃头
#MATLABmatlab分类图像处理
实验内容将MIT室内场景数据库中卧室、浴室作为正负样本,利用留出法完成训练集与测试集的划分(比例1:2),并使用测量夹角余弦的方式进行二分类(0为负,1为正),最后给出分类错误率和准确率,并绘制ROC曲线。实验原理【余弦距离】也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量。余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。实验
【小白学AI系列】NLP 核心知识点(七)Embedding概念介绍
Blankspace空白
人工智能自然语言处理embedding
Embedding(嵌入)是自然语言处理(NLP)中非常重要的概念。简单来说,embedding是一种将离散的、稀疏的、不可直接计算的对象(比如词、字符或句子)转换为密集的、连续的向量表示的技术。这个向量通常是低维的,并且在向量空间中能够捕捉到该对象的某些语义或结构特征。可以通过这种方式将我们通常理解为文本的信息转化为模型可以处理的数字形式。1.为什么需要Embedding?传统的计算机处理文本的
Matlab 点云移动最小二乘法(MLS)
大鱼BIGFISH
点云数据处理matlab最小二乘法点云移动最小二乘法(MLS)
文章目录一、简介二、实现代码三、实现效果参考文献一、简介我们要明白MLS是想用一组基函数来局部近似我们的目标函数,它非常类似于我们所学的泰勒公式,只不过它是基于局部的。这里我们以一维的MLS为例,其具体的原理如下所述:假设Ω为范数向量空间,而u为Ω内场变量的标量。为了形成一个近似函数uau^au
Java程序员面临抉择:激烈竞争下,转行大模型或是新出路,非常详细收藏我这一篇就够了!
大模型教程
大模型学习学习大模型语言模型人工智能程序员转行
Java程序员转行大模型领域,可以依据以下详细路线进行学习和职业转换:第1阶段:基础知识巩固数学基础:线性代数:矩阵运算、向量空间等。概率论与统计:概率分布、统计推断等。微积分:导数、积分、多变量函数等。Python编程:Python基础:数据类型、控制结构、函数等。Python进阶:面向对象编程、装饰器、生成器等。数据处理:NumPy、Pandas、Matplotlib。第2阶段:机器学习与深度
格拉姆角场(GAF)将一维序列转化为图像
开发小途
图像处理
格拉姆角场(GramianAngularField,GAF)是一种将一维时间序列数据转换为二维图像表示的有效方法。以下是关于格拉姆角场(GAF)的详细解释,包括其原理、步骤以及优势和应用:一、原理格拉姆角场通过将一维时间序列数据中的每个数据点视为向量空间中的一个点,并计算这些点之间夹角的余弦值,进而将这些余弦值映射到二维图像的像素上,从而生成能够反映时间序列动态和周期性特征的图像。二、步骤数据预处
【AI知识点】余弦相似度(Cosine Similarity)
AI完全体
AI知识点人工智能机器学习深度学习线性代数相似性比较自然语言处理向量的距离
【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】余弦相似度(CosineSimilarity)是一种用于衡量两个向量在方向上的相似程度的指标。它主要用于文本分析、自然语言处理(NLP)、推荐系统等任务中,能够衡量两个向量之间的相似性,而不受向量的长度(模)影响。可对比点积相似性(dot-productsimilarity)来学习1.余弦相似度的定义余弦相似度通过计算两个向量之间的夹角的
漫话最小二乘法-1.矩阵表示
sHermit
最小二乘向量表示
无论是科研开始工程中,最小二乘法可谓无处不在。这里我想抛砖引玉,谈谈我对最小二乘的了解,也顺便理一理自己的思路,所谓:温故而知新嘛。这里将从矩阵和向量空间着手,先用矩阵和向量的方式表示最小二乘问题,以便后面说明其原理。最小二乘最早是由勒让德和高斯各自提出的。高斯成功的用最小二乘法解决了谷神星轨道计算的问题。先从最基本的线性回归说起最小二乘的用法。如图所示,蓝色圆圈描绘了一组点,可以大致看出这样一组
关于双塔模型的简单介绍
eso1983
python算法推荐算法
双塔模型是一种常用于推荐系统和信息检索等领域的深度学习架构,其核心思想是将用户和物品分别映射到不同的向量空间,通过计算两个向量的相似度来预测用户对物品的偏好或相关性。1.python示例使用python语言来简单示例一下实现过程如下:importtensorflowastffromtensorflow.keras.layersimportInput,Dense,Embedding,Concaten
【小白学AI系列】NLP 核心知识点(三)Word2Vec
Blankspace空白
人工智能自然语言处理word2vec
Word2Vec定义:Word2Vec是一种将单词转化为向量的技术,基于神经网络模型,它能够将单词的语义关系通过向量空间的距离和方向进行表示。通过Word2Vec,我们可以将单词从一个离散的符号转化为一个稠密的向量(一般是高维的),并且能够捕捉到单词之间的语义关系和相似性。历史来源:Word2Vec由TomasMikolov等人于2013年在谷歌提出,它迅速成为了词向量表示(wordembeddi
自然语言处理-词嵌入 (Word Embeddings)
纠结哥_Shrek
自然语言处理人工智能
词嵌入(WordEmbedding)是一种将单词或短语映射到高维向量空间的技术,使其能够以数学方式表示单词之间的关系。词嵌入能够捕捉语义信息,使得相似的词在向量空间中具有相近的表示。常见词嵌入方法基于矩阵分解的方法LatentSemanticAnalysis(LSA)LatentDirichletAllocation(LDA)非负矩阵分解(NMF)基于神经网络的方法Word2Vec(Google提
跨平台物联网漏洞挖掘算法评估框架设计与实现文献综述之GMN
XLYcmy
漏洞挖掘物联网网络安全漏洞挖掘跨架构静态检测图神经网络项目报告
2.4Gemini和GMN我们采用了两种方式:Gemini和GMN。2.4.2GMN图神经网络(GraphNeuralNetworks-GNNs)是一种用于学习结构化数据及相关预测问题的方法。节点的表示被用于节点分类或生成图向量再用于分类。GMN模型针对图的相似性学习问题,提出了一种使用GNNs将图嵌入到向量空间,并通过交叉图注意机制来计算相似度分数以关联图之间的相似性的模型。GMN模型不是独立地
RAG理论到实践:高级、模块化RAG在AI工程架构中的行业通用解决方案与实施策略(Advanced RAG✨)
汀、人工智能
LLM工业级落地实践人工智能AIAgentRAG知识问答智能问答
RAG理论到实践:高级、模块化RAG在AI工程架构中的行业通用解决方案与实施策略(AdvancedRAG✨)1.RAG简介词汇解释说明embedding嵌入(embedding)是指将高维数据映射为低维表示的过程。在机器学习和自然语言处理中,嵌入通常用于将离散的符号或对象表示为连续的向量空间中的点。在自然语言处理中,词嵌入(wordembedding)是一种常见的技术,它将单词映射到实数向量,以便
想转行到人工智能领域,我该学什么,怎么学?
张登杰踩
人工智能python
转行到人工智能(AI)领域需要系统的学习和实践,以下是详细的路径建议,涵盖基础知识、技能学习、项目实践和求职准备:一、明确目标和领域方向人工智能领域广泛,建议先了解细分方向(如机器学习、深度学习、计算机视觉、自然语言处理、强化学习等),结合兴趣和职业规划选择切入点。二、构建基础知识1.数学基础线性代数:矩阵运算、特征值、向量空间。微积分:导数、梯度、优化理论。概率与统计:贝叶斯定理、分布、假设检验
使用ModelScope实现高效句嵌入生成
dagGAIYD
python
技术背景介绍在自然语言处理(NLP)任务中,向量化文本(嵌入)是许多下游任务(如语义搜索、文本分类、问答系统等)的核心步骤之一。通过将文本转换为密集向量表示,我们可以在高维向量空间中构建更加高效的表示和检索算法。ModelScope是阿里云开源的一个模型和数据集管理平台,提供了大量预训练模型,涵盖了各种领域和任务。ModelScopeEmbeddings是一个与LangChain社区集成的工具类,
人工智能之数学基础:一个小例子帮你快速搞懂极大线性无关向量组
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能线性代数机器学习极大线性无关向量组深度学习神经网络
本文重点在上一节课程中,我们学习了线性相关和线性无关。当线性相关的时候,那么说明这组向量至少存在一个向量可以被其它向量给表示,可以被表示就说明这个向量就是可有可无的,可以被替代的,这里就涉及到极大线性无关向量组的概念了,本文对此进行学习。极大无关向量组的定义与性质定义在线性空间中,如果存在一个向量组,它满足以下两个条件:一是它本身是线性无关的;二是向量空间中的任何包含它的向量组,如果仍然保持线性无
知识图谱中的word2vec 技术是做什么的?
kcarly
知识图谱入门知识图谱word2vec人工智能
Word2Vec是一种将单词转换为向量表示的技术,由Google在2013年提出。这项技术的核心思想是通过大规模文本数据训练神经网络模型,从而将单词映射到低维稠密的向量空间中。这些向量能够捕捉到单词之间的语义和语法关系,使得相似或相关的单词在向量空间中彼此靠近。Word2Vec的基本原理Word2Vec主要包括两种训练模型:CBOW(ContinuousBagofWords)和Skip-gram。
关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
[游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/