HDU 5505 GT and numbers(GCD魔法)

题目链接:点击打开链接

题意:给两个数n和m, n每次乘以它的因子变成一个新的值, 求最少乘几次可以变成m。

思路:每次乘以的整数v有两个要求:1.它是n的因子;2.它要尽量大。

又因为如果n能最终到达m,一定是乘以n的k倍, 所以只要n能被m整除, 那么每次取gcd(n, m/n)就行了。

细节参见代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<string>
#include<vector>
#include<stack>
#include<bitset>
#include<cstdlib>
#include<cmath>
#include<set>
#include<list>
#include<deque>
#include<map>
#include<queue>
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef unsigned long long ll;
const double PI = acos(-1.0);
const double eps = 1e-6;
const int mod = 1000000000 + 7;
const int INF = 1000000000;
const int maxn = 100;
int T;
ll n,m;
ll gcd(ll a, ll b) {
    return b == 0 ? a : gcd(b, a%b);
}
int main() {
    scanf("%d",&T);
    while(T--) {
        scanf("%I64u%I64u",&n,&m);
        int ans = 0;
        if(n > m || m % n != 0 || n == 1 && m > 1) {
            printf("-1\n");
        }
        else {
            while(n != m) {
                ll v = gcd(n,m/n);
                if(v == 1) break;
                n *= v;
                ++ans;
            }
            if(n == m) printf("%d\n",ans);
            else printf("-1\n");
        }
    }
    return 0;
}


你可能感兴趣的:(HDU,gcd,ACM-ICPC)