题目链接:点击打开链接
题意:给两个数n和m, n每次乘以它的因子变成一个新的值, 求最少乘几次可以变成m。
思路:每次乘以的整数v有两个要求:1.它是n的因子;2.它要尽量大。
又因为如果n能最终到达m,一定是乘以n的k倍, 所以只要n能被m整除, 那么每次取gcd(n, m/n)就行了。
细节参见代码:
#include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<string> #include<vector> #include<stack> #include<bitset> #include<cstdlib> #include<cmath> #include<set> #include<list> #include<deque> #include<map> #include<queue> #define Max(a,b) ((a)>(b)?(a):(b)) #define Min(a,b) ((a)<(b)?(a):(b)) using namespace std; typedef unsigned long long ll; const double PI = acos(-1.0); const double eps = 1e-6; const int mod = 1000000000 + 7; const int INF = 1000000000; const int maxn = 100; int T; ll n,m; ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int main() { scanf("%d",&T); while(T--) { scanf("%I64u%I64u",&n,&m); int ans = 0; if(n > m || m % n != 0 || n == 1 && m > 1) { printf("-1\n"); } else { while(n != m) { ll v = gcd(n,m/n); if(v == 1) break; n *= v; ++ans; } if(n == m) printf("%d\n",ans); else printf("-1\n"); } } return 0; }