人脸识别主要方法:
.Eigenfaces,PCA(Principal Component Analysis),Turk and Pentland,1991
.Fisherfaces,LDA(Linear Discriminant Analysis),Belhumeur, Hespanha and Kriegman,1997
.LBPH,Local Binary Pattern Histograms,Ahonen, Hadid and Pietikäinen,2004
本文的目的,是结合人脸识别体验一把PCA,体会其内涵:降维。另外文献说,PCA的识别效果一般比神经网络ANN好。本文有20张人脸用于训练,10张人脸用于测试。
1.PCA人脸识别方法
将PCA方法用于人脸识别,其实是假设所有的人脸都处于一个低维线性空间,而且不同的人脸在这个空间中具有可分性。其具体做法是由高维 图像空间经PCA变换后得到一组新的正交基,对这些正交基做一定的取舍,保留其中的一部分生成低维的人脸空间,也即是人脸的特征子空间。PCA人脸识别算法步骤包括:
a.人脸图像预处理 【我没做,人脸大小都是高200,宽180】
b.读入人脸库,训练形成特征子空间 【特征值、特征向量的求法,采用我上一篇文章的QR算法】
c.把训练图像和测试图像投影到上一步骤中的特征子空间上 【矩阵相乘】
d.选择一定的距离函数进行判别 【欧氏距离,挑最小的匹配】
2.PCA人脸识别流程
a.读入人脸库,读入每一个二维的人脸图像并转化为一维的向量,每个人选定一定数量的人脸照片构成训练集【共20张】,则训练集是一个36000*20的矩阵。测试集共10张图像,每次选一张,则测试集是一个36000*1的矩阵。
样本集:
测试集:
代码:
void load_data(double *T,IplImage *src,int k) { int i,j; //一副图像压缩成一维的,存在T的一列里 for (i=0;i<IMG_HEIGHT;i++) { for (j=0;j<IMG_WIDTH;j++) { T[(i*IMG_WIDTH+j)*TRAIN_NUM+k-1]= (double)(unsigned char)src->imageData[i*IMG_WIDTH+j]; } } }
b.计算 PCA变换的生成矩阵Q。首先计算训练集的协方差矩阵X,其中x1,x2,...,xn为第i副图像的描述,即xi为一个36000*1的列向量。
由于这个矩阵太大36000*36000,求特征值和特征向量比较坑,所以改为求 P=XTX 的特征向量和特征值,且有如下性质:
设e是矩阵P的特征值λ对应的特征向量,则有:
这里,X*e也是矩阵Q的特征值λ对应的特征向量,可以如此变换。
代码:
void calc_mean(double *T,double *m) { int i,j; double temp; for (i=0;i<IMG_WIDTH*IMG_HEIGHT;i++) { temp=0; for (j=0;j<TRAIN_NUM;j++) { temp = temp + T[i*TRAIN_NUM+j]; } m[i] = temp/TRAIN_NUM; } } void calc_covariance_matrix(double *T,double *L,double *m) { int i,j,k; double *T1; //T = T -m for (i=0;i<IMG_WIDTH*IMG_HEIGHT;i++) { for (j=0;j<TRAIN_NUM;j++) { T[i*TRAIN_NUM+j] = T[i*TRAIN_NUM+j] - m[i]; } } T1 = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*TRAIN_NUM); //L = T' * T matrix_reverse(T,T1,IMG_WIDTH*IMG_HEIGHT,TRAIN_NUM); matrix_mutil(L,T1,T,TRAIN_NUM,IMG_HEIGHT*IMG_WIDTH,TRAIN_NUM); free(T1); }
void cstrq(double a[],int n,double q[],double b[],double c[]) { int i,j,k,u,v; double h,f,g,h2; for (i=0; i<=n-1; i++) for (j=0; j<=n-1; j++) { u=i*n+j; q[u]=a[u];} for (i=n-1; i>=1; i--) { h=0.0; if (i>1) for (k=0; k<=i-1; k++) { u=i*n+k; h=h+q[u]*q[u];} if (h+1.0==1.0) { c[i]=0.0; if (i==1) c[i]=q[i*n+i-1]; b[i]=0.0; } else { c[i]=sqrt(h); u=i*n+i-1; if (q[u]>0.0) c[i]=-c[i]; h=h-q[u]*c[i]; q[u]=q[u]-c[i]; f=0.0; for (j=0; j<=i-1; j++) { q[j*n+i]=q[i*n+j]/h; g=0.0; for (k=0; k<=j; k++) g=g+q[j*n+k]*q[i*n+k]; if (j+1<=i-1) for (k=j+1; k<=i-1; k++) g=g+q[k*n+j]*q[i*n+k]; c[j]=g/h; f=f+g*q[j*n+i]; } h2=f/(h+h); for (j=0; j<=i-1; j++) { f=q[i*n+j]; g=c[j]-h2*f; c[j]=g; for (k=0; k<=j; k++) { u=j*n+k; q[u]=q[u]-f*c[k]-g*q[i*n+k]; } } b[i]=h; } } for (i=0; i<=n-2; i++) c[i]=c[i+1]; c[n-1]=0.0; b[0]=0.0; for (i=0; i<=n-1; i++) { if ((b[i]!=0.0)&&(i-1>=0)) for (j=0; j<=i-1; j++) { g=0.0; for (k=0; k<=i-1; k++) g=g+q[i*n+k]*q[k*n+j]; for (k=0; k<=i-1; k++) { u=k*n+j; q[u]=q[u]-g*q[k*n+i]; } } u=i*n+i; b[i]=q[u]; q[u]=1.0; if (i-1>=0) for (j=0; j<=i-1; j++) { q[i*n+j]=0.0; q[j*n+i]=0.0;} } return; } //q:特征向量,b:特征值 int csstq(int n,double b[],double c[],double q[],double eps,int l) { int i,j,k,m,it,u,v; double d,f,h,g,p,r,e,s; c[n-1]=0.0; d=0.0; f=0.0; for (j=0; j<=n-1; j++) { it=0; h=eps*(fabs(b[j])+fabs(c[j])); if (h>d) d=h; m=j; while ((m<=n-1)&&(fabs(c[m])>d)) m=m+1; if (m!=j) { do { if (it==l) { printf("fail\n"); return(-1); } it=it+1; g=b[j]; p=(b[j+1]-g)/(2.0*c[j]); r=sqrt(p*p+1.0); if (p>=0.0) b[j]=c[j]/(p+r); else b[j]=c[j]/(p-r); h=g-b[j]; for (i=j+1; i<=n-1; i++) b[i]=b[i]-h; f=f+h; p=b[m]; e=1.0; s=0.0; for (i=m-1; i>=j; i--) { g=e*c[i]; h=e*p; if (fabs(p)>=fabs(c[i])) { e=c[i]/p; r=sqrt(e*e+1.0); c[i+1]=s*p*r; s=e/r; e=1.0/r; } else { e=p/c[i]; r=sqrt(e*e+1.0); c[i+1]=s*c[i]*r; s=1.0/r; e=e/r; } p=e*b[i]-s*g; b[i+1]=h+s*(e*g+s*b[i]); for (k=0; k<=n-1; k++) { u=k*n+i+1; v=u-1; h=q[u]; q[u]=s*q[v]+e*h; q[v]=e*q[v]-s*h; } } c[j]=s*p; b[j]=e*p; } while (fabs(c[j])>d); } b[j]=b[j]+f; } for (i=0; i<=n-1; i++) { k=i; p=b[i]; if (i+1<=n-1) { j=i+1; while ((j<=n-1)&&(b[j]<=p)) { k=j; p=b[j]; j=j+1;} } if (k!=i) { b[k]=b[i]; b[i]=p; for (j=0; j<=n-1; j++) { u=j*n+i; v=j*n+k; p=q[u]; q[u]=q[v]; q[v]=p; } } } return(1); } void matrix_reverse(double *src,double *dest,int row,int col) //转置 { int i,j; for(i = 0;i < col;i++) { for(j = 0;j < row;j++) { dest[i * row + j] = src[j * col + i]; } } } void matrix_mutil(double *c,double *a,double *b,int x,int y,int z) //矩阵乘法 { int i,j,k; for (i=0;i<x;i++) { for (k=0;k<z;k++) { for (j=0;j<y;j++) { c[i*z+k] +=a[i*y+j]*b[j*z+k]; } } } }
void pick_eignevalue(double *b,double *q,double *p_q,int num_q) { int i,j,k; k=0;//p_q的列 for (i=0;i<TRAIN_NUM;i++)//col { if (b[i]>1) { for (j=0;j<TRAIN_NUM;j++)//row { p_q[j*num_q+k] = q[j*TRAIN_NUM+i];//按列访问q,按列存储到p_q } k++; } } }
【非必要步骤,特征脸如何重构,即 X*e,X大小为36000*20,e大小为20*k,每次只需将36000行的一列数据按照图像大小按行存储即可,这样就有k张特征脸图像】:
double *temp; IplImage *projected; char res[20]={0}; //file name temp = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*num_q);//按列存取 projected = cvCreateImage(cvSize(IMG_WIDTH,IMG_HEIGHT),IPL_DEPTH_8U,1); //求特征脸 matrix_mutil(temp,T,p_q,IMG_WIDTH*IMG_HEIGHT,TRAIN_NUM,num_q); for (i=0;i<num_q;i++) { sprintf(res,"%d.jpg",i); for (j=0;j<IMG_HEIGHT;j++) { for (k=0;k<IMG_WIDTH;k++) { projected->imageData[j*IMG_WIDTH+k] = (unsigned char)abs(temp[(j*IMG_WIDTH+k)*num_q+i]); } } cvSaveImage(res,projected); }
回到原题,我们已经对P使用QR算法求的特征向量和特征值,通过X*e得到了Q的特征向量eigenvector大小36000*k,它构成了降维子空间。接下来,分别让样本集和测试集的图像投影到该子空间中,即:eigenvector ' * X 等等,然后得到一组坐标系数。
计算Q的特征向量和样本集像子空间投影的代码:
void get_eigenface(double *p_q,double *T,int num_q,double *projected_train,double *eigenvector) { double *temp; double tmp; int i,j,k; //IplImage *projected; //char res[20]={0}; //file name projected = cvCreateImage(cvSize(IMG_WIDTH,IMG_HEIGHT),IPL_DEPTH_8U,1); //temp = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*num_q);//按列存取 memset(eigenvector,0,sizeof(double)*IMG_HEIGHT*IMG_WIDTH*num_q); memset(projected_train,0,sizeof(double)*TRAIN_NUM*num_q); //求特征脸 //matrix_mutil(temp,T,p_q,IMG_WIDTH*IMG_HEIGHT,TRAIN_NUM,num_q); /*for (i=0;i<num_q;i++) { sprintf(res,"%d.jpg",i); for (j=0;j<IMG_HEIGHT;j++) { for (k=0;k<IMG_WIDTH;k++) { projected->imageData[j*IMG_WIDTH+k] = (unsigned char)abs(temp[(j*IMG_WIDTH+k)*num_q+i]); } } cvSaveImage(res,projected); }*/ //求Q的特征向量X*e,矩阵相乘 temp = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*num_q); matrix_mutil(temp,T,p_q,IMG_HEIGHT*IMG_WIDTH,TRAIN_NUM,num_q); //投影到子空间 matrix_reverse(temp,eigenvector,IMG_WIDTH*IMG_HEIGHT,num_q); matrix_mutil(projected_train,eigenvector,T,num_q,IMG_WIDTH*IMG_HEIGHT,TRAIN_NUM); free(temp); }
//读取测试图像 test_img = cvLoadImage(".\\TestDatabase\\4.jpg",CV_LOAD_IMAGE_GRAYSCALE); projected_test = (double *)malloc(sizeof(double)*num_q*1);//在特征空间投影后的测试样本 for (i=0;i<IMG_HEIGHT;i++) { for (j=0;j<IMG_WIDTH;j++) { T_test[i*IMG_WIDTH+j] = (double)(unsigned char)test_img->imageData[i*IMG_WIDTH+j] - m[i*IMG_WIDTH+j]; } } //将待测数据投影到特征空间 memset(projected_test,0,sizeof(double)*num_q); matrix_mutil(projected_test,eigenvector,T_test,num_q,IMG_WIDTH*IMG_HEIGHT,1);
//计算projected_test与projected_train中每个向量的欧氏距离 Euc_dist = (double *)malloc(sizeof(double)*TRAIN_NUM); for (i=0;i<TRAIN_NUM;i++) { temp = 0; for (j=0;j<num_q;j++) { temp = temp + (projected_test[j]-projected_train[j*TRAIN_NUM+i])*(projected_test[j]-projected_train[j*TRAIN_NUM+i]); } Euc_dist[i] = temp; //printf("%f \n",temp); } //寻找最小距离 double min = Euc_dist[0]; int label; for (i=0;i<TRAIN_NUM;i++) { if (min>=Euc_dist[i]) { min = Euc_dist[i]; label = i; } } printf("%d.jpg is mathcing!",label+1);
即测试集中的4.jpg和样本集中的7.jpg对应匹配
下面给出主函数及各个头文件声明:
My_Matrix.h:
#include <math.h> #include <stdio.h> void cstrq(double a[],int n,double q[],double b[],double c[]); int csstq(int n,double b[],double c[],double q[],double eps,int l); void matrix_mutil(double *c,double *a,double *b,int x,int y,int z); void matrix_reverse(double *src,double *dest,int row,int col);
#include "cv.h" #include "highgui.h" #define TRAIN_NUM 20 #define IMG_HEIGHT 200 #define IMG_WIDTH 180 void load_data(double *T,IplImage *src,int k); void calc_mean(double *T,double *m); void calc_covariance_matrix(double *T,double *L,double *m); void pick_eignevalue(double *b,double *q,double *p_q,int num_q); void get_eigenface(double *p_q,double *T,int num_q,double *projected,double *eigenvector);
// face_recognition.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include "Process.h" #include "My_Matrix.h" int _tmain(int argc, _TCHAR* argv[]) { double *T,*L,*m,*b,*q,*c,*p_q,*projected_train,*T_test,*projected_test,*eigenvector,*Euc_dist; double eps,temp; int i,j,flag,iteration,num_q; char res[20]; IplImage *tmp_img,*test_img; T = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*TRAIN_NUM); //原始数据 T_test = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*1); //测试数据 m = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH); //平均值 L = (double *)malloc(sizeof(double)*TRAIN_NUM*TRAIN_NUM); //L=T'*T,协方差矩阵 b = (double *)malloc(sizeof(double)*TRAIN_NUM); //L的特征值 q = (double *)malloc(sizeof(double)*TRAIN_NUM*TRAIN_NUM); //L特征值对应的特征向量 c = (double *)malloc(sizeof(double)*TRAIN_NUM); //实对称三对角矩阵的次对角线元素 eps = 0.000001; memset(L,0,sizeof(double)*TRAIN_NUM*TRAIN_NUM); //存储图像数据到T矩阵 for (i=1;i<=TRAIN_NUM;i++) { sprintf(res,".\\TrainDatabase\\%d.jpg",i); tmp_img = cvLoadImage(res,CV_LOAD_IMAGE_GRAYSCALE); load_data(T,tmp_img,i); } //求T矩阵行的平均值 calc_mean(T,m); //构造协方差矩阵 calc_covariance_matrix(T,L,m); //求L的特征值,特征向量 iteration = 60; cstrq(L,TRAIN_NUM,q,b,c); flag = csstq(TRAIN_NUM,b,c,q,eps,iteration); //数组q中第j列为数组b中第j个特征值对应的特征向量 if (flag<0) { printf("fucking failed!\n"); }else { printf("success to get eigen value and vector\n"); } //对L挑选合适的特征值,过滤特征向量 num_q=0; for (i=0;i<TRAIN_NUM;i++) { if (b[i]>1) { num_q++; } } p_q = (double *)malloc(sizeof(double)*TRAIN_NUM*TRAIN_NUM); //挑选后的L的特征向量,仅过滤,未排序 projected_train = (double *)malloc(sizeof(double)*TRAIN_NUM*num_q); //投影后的训练样本特征空间 eigenvector = (double *)malloc(sizeof(double)*IMG_HEIGHT*IMG_WIDTH*num_q);//Pe=λe,Q(Xe)=λ(Xe),投影变换向量 pick_eignevalue(b,q,p_q,num_q); get_eigenface(p_q,T,num_q,projected_train,eigenvector); //读取测试图像 test_img = cvLoadImage(".\\TestDatabase\\4.jpg",CV_LOAD_IMAGE_GRAYSCALE); projected_test = (double *)malloc(sizeof(double)*num_q*1);//在特征空间投影后的测试样本 for (i=0;i<IMG_HEIGHT;i++) { for (j=0;j<IMG_WIDTH;j++) { T_test[i*IMG_WIDTH+j] = (double)(unsigned char)test_img->imageData[i*IMG_WIDTH+j] - m[i*IMG_WIDTH+j]; } } //将待测数据投影到特征空间 memset(projected_test,0,sizeof(double)*num_q); matrix_mutil(projected_test,eigenvector,T_test,num_q,IMG_WIDTH*IMG_HEIGHT,1); //计算projected_test与projected_train中每个向量的欧氏距离 Euc_dist = (double *)malloc(sizeof(double)*TRAIN_NUM); for (i=0;i<TRAIN_NUM;i++) { temp = 0; for (j=0;j<num_q;j++) { temp = temp + (projected_test[j]-projected_train[j*TRAIN_NUM+i])*(projected_test[j]-projected_train[j*TRAIN_NUM+i]); } Euc_dist[i] = temp; //printf("%f \n",temp); } //寻找最小距离 double min = Euc_dist[0]; int label; for (i=0;i<TRAIN_NUM;i++) { if (min>=Euc_dist[i]) { min = Euc_dist[i]; label = i; } } printf("%d.jpg is mathcing!",label+1); return 0; }这里面 ,矩阵操作有点头大,再梳理一遍:
1.将20副高200,宽180的图像,存入矩阵T中,36000*20
2.计算T的协方差矩阵L,20*20
3.求P的特征值b,20*1,特征向量q,20*20【q中的第j列向量即为b中第j个特征值对应的特征向量】,经过挑选后的特征向量num_q,20*k
4.构造特征子空间,即计算 T*p_q,得到eigenvector,36000*k,也是k副特征脸
5.将样本集图像投影到特征子空间,即计算eigenvector ' * T,得到一组坐标系数,projected_train,k*20,每一列为对应图像在子空间中的坐标
6.同理操作,得到测试图像在子空间中的坐标,projected_test,k*1
7.分别计算projected_tes和projected_train的坐标距离,选最小的匹配。
完整代码,下载地址:http://download.csdn.net/detail/jinshengtao/6870069