Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性回归多参数线性回归和 逻辑回归的总结版。旨在帮助大家更好地理解回归,所以我在Matlab中分别对他们予以实现,在本文中由易到难地逐个介绍。

本讲内容:

Matlab 实现各种回归函数

=========================

基本模型

Y=θ0+θ1X1型---线性回归(直线拟合)

解决过拟合问题---Regularization

Y=1/(1+e^X)型---逻辑回归(sigmod 函数拟合)

=========================


第一部分:基本模型


在解决拟合问题的解决之前,我们首先回忆一下线性回归和逻辑回归的基本模型。

设待拟合参数 θn*1 和输入参数[ xm*n, ym*1 ] 。


对于各类拟合我们都要根据梯度下降的算法,给出两部分:

①   cost function(指出真实值y与拟合值h<hypothesis>之间的距离):给出cost function 的表达式,每次迭代保证cost function的量减小;给出梯度gradient,即cost function对每一个参数θ的求导结果。

function [ jVal,gradient ] = costFunction ( theta )

 

②   Gradient_descent(主函数):用来运行梯度下降算法,调用上面的cost function进行不断迭代,直到最大迭代次数达到给定标准或者cost function返回值不再减小。

function [optTheta,functionVal,exitFlag]=Gradient_descent( )

 

线性回归:拟合方程为hθ(x)=θ0x01x1+…+θnxn,当然也可以有xn的幂次方作为线性回归项(如),这与普通意义上的线性不同,而是类似多项式的概念。

其cost function 为:

 

逻辑回归:拟合方程为hθ(x)=1/(1+e^(θTx)),其cost function 为:Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression_第1张图片

 

cost function对各θj的求导请自行求取,看第三章最后一图,或者参见后文代码。

后面,我们分别对几个模型方程进行拟合,给出代码,并用matlab中的fit函数进行验证。




第二部分:Y=θ0+θ1X1型---线性回归(直线拟合)

在Matlab 线性拟合 & 非线性拟合中我们已经讲过如何用matlab自带函数fit进行直线和曲线的拟合,非常实用。而这里我们是进行ML课程的学习,因此研究如何利用前面讲到的梯度下降法(gradient descent)进行拟合。


cost function:
function [ jVal,gradient ] = costFunction2( theta )
%COSTFUNCTION2 Summary of this function goes here
%   linear regression -> y=theta0 + theta1*x
%   parameter: x:m*n  theta:n*1   y:m*1   (m=4,n=1)
%   

%Data
x=[1;2;3;4];
y=[1.1;2.2;2.7;3.8];
m=size(x,1);

hypothesis = h_func(x,theta);
delta = hypothesis - y;
jVal=sum(delta.^2);

gradient(1)=sum(delta)/m;
gradient(2)=sum(delta.*x)/m;

end

其中,h_func是hypothesis的结果:
function [res] = h_func(inputx,theta)
%H_FUNC Summary of this function goes here
%   Detailed explanation goes here


%cost function 2
res= theta(1)+theta(2)*inputx;function [res] = h_func(inputx,theta)
end


Gradient_descent:
function [optTheta,functionVal,exitFlag]=Gradient_descent( )
%GRADIENT_DESCENT Summary of this function goes here
%   Detailed explanation goes here

  options = optimset('GradObj','on','MaxIter',100);
  initialTheta = zeros(2,1);
  [optTheta,functionVal,exitFlag] = fminunc(@costFunction2,initialTheta,options);

end

result:
>> [optTheta,functionVal,exitFlag] = Gradient_descent()

Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the function tolerance.

<stopping criteria details>


optTheta =

    0.3000
    0.8600


functionVal =

    0.0720


exitFlag =

     1



即得y=0.3+0.86x;
验证:
function [ parameter ] = checkcostfunc(  )
%CHECKC2 Summary of this function goes here
%   check if the cost function works well
%   check with the matlab fit function as standard

%check cost function 2
x=[1;2;3;4];
y=[1.1;2.2;2.7;3.8];

EXPR= {'x','1'};
p=fittype(EXPR);
parameter=fit(x,y,p);

end

运行结果:
>> checkcostfunc()

ans = 

     Linear model:
     ans(x) = a*x + b
     Coefficients (with 95% confidence bounds):
       a =        0.86  (0.4949, 1.225)
       b =         0.3  (-0.6998, 1.3)

和我们的结果一样。下面画图:
function PlotFunc( xstart,xend )
%PLOTFUNC Summary of this function goes here
%   draw original data and the fitted 



%===================cost function 2====linear regression
%original data
x1=[1;2;3;4];
y1=[1.1;2.2;2.7;3.8];
%plot(x1,y1,'ro-','MarkerSize',10);
plot(x1,y1,'rx','MarkerSize',10);
hold on;

%fitted line - 拟合曲线
x_co=xstart:0.1:xend;
y_co=0.3+0.86*x_co;
%plot(x_co,y_co,'g');
plot(x_co,y_co);

hold off;
end

Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression_第2张图片


第三部分: 解决过拟合问题---Regularization

过拟合问题解决方法我们已在第三章中讲过,利用Regularization的方法就是在cost function中加入关于 θ的项,使得部分θ的值偏小,从而达到fit效果。
例如定义 costfunction J(θ): jVal=(theta(1)-5)^2+(theta(2)-5)^2;

在每次迭代中,按照gradient descent的方法更新参数θ:θ(i)-=gradient(i),其中gradient(i)是J(θ)对θi求导的函数式,在此例中就有gradient(1)=2*(theta(1)-5), gradient(2)=2*(theta(2)-5)。


函数costFunction, 定义jVal=J(θ)和对两个θ的gradient:


function [ jVal,gradient ] = costFunction( theta )
%COSTFUNCTION Summary of this function goes here
%   Detailed explanation goes here

jVal= (theta(1)-5)^2+(theta(2)-5)^2;

gradient = zeros(2,1);
%code to compute derivative to theta
gradient(1) = 2 * (theta(1)-5);
gradient(2) = 2 * (theta(2)-5);

end

Gradient_descent,进行参数优化
function [optTheta,functionVal,exitFlag]=Gradient_descent( )
%GRADIENT_DESCENT Summary of this function goes here
%   Detailed explanation goes here

 options = optimset('GradObj','on','MaxIter',100);
 initialTheta = zeros(2,1)
 [optTheta,functionVal,exitFlag] = fminunc(@costFunction,initialTheta,options);
  
end

matlab主窗口中调用,得到优化厚的参数(θ1,θ2)=(5,5)
 [optTheta,functionVal,exitFlag] = Gradient_descent()

initialTheta =

     0
     0


Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the function tolerance.

<stopping criteria details>


optTheta =

     5
     5


functionVal =

     0


exitFlag =

     1


第四部分:Y=1/(1+e^X)型---逻辑回归(sigmod 函数拟合)

hypothesis function:
function [res] = h_func(inputx,theta)

%cost function 3
tmp=theta(1)+theta(2)*inputx;%m*1
res=1./(1+exp(-tmp));%m*1

end

cost function:
function [ jVal,gradient ] = costFunction3( theta )
%COSTFUNCTION3 Summary of this function goes here
%   Logistic Regression

x=[-3;      -2;     -1;     0;      1;      2;     3];
y=[0.01;    0.05;   0.3;    0.45;   0.8;    1.1;    0.99];
m=size(x,1);

%hypothesis  data
hypothesis = h_func(x,theta);

%jVal-cost function  &  gradient updating
jVal=-sum(log(hypothesis+0.01).*y + (1-y).*log(1-hypothesis+0.01))/m;
gradient(1)=sum(hypothesis-y)/m;   %reflect to theta1
gradient(2)=sum((hypothesis-y).*x)/m;    %reflect to theta 2

end

Gradient_descent:
function [optTheta,functionVal,exitFlag]=Gradient_descent( )

 options = optimset('GradObj','on','MaxIter',100);
 initialTheta = [0;0];
 [optTheta,functionVal,exitFlag] = fminunc(@costFunction3,initialTheta,options);

end

运行结果:
 [optTheta,functionVal,exitFlag] = Gradient_descent()

Local minimum found.

Optimization completed because the size of the gradient is less than
the default value of the function tolerance.

<stopping criteria details>


optTheta =

    0.3526
    1.7573


functionVal =

    0.2498


exitFlag =

     1

画图验证:

function PlotFunc( xstart,xend )
%PLOTFUNC Summary of this function goes here
%   draw original data and the fitted 

%===================cost function 3=====logistic regression

%original data
x=[-3;      -2;     -1;     0;      1;      2;     3];
y=[0.01;    0.05;   0.3;    0.45;   0.8;    1.1;    0.99];
plot(x,y,'rx','MarkerSize',10);
hold on

%fitted line
x_co=xstart:0.1:xend;
theta = [0.3526,1.7573];
y_co=h_func(x_co,theta);
plot(x_co,y_co);
hold off

end

Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression_第3张图片

有朋友问,这里就补充一下logistic regression中gradient的推导:
则有
由于cost function
可得
所以gradient = -J'(theta) = (z-y)x



关于Machine Learning更多的学习资料将继续更新,敬请关注本博客和新浪微博Sophia_qing

==============================


Reference:

1. http://blog.csdn.net/abcjennifer/article/details/7691571
2.http://blog.csdn.net/abcjennifer/article/details/7700772
3.http://blog.csdn.net/abcjennifer/article/details/7716281
4.http://blog.csdn.net/abcjennifer/article/details/7684836


你可能感兴趣的:(算法,function,matlab,less,reference,plot)