这本书和配套代码网上都有得下载。
要实现书中的效果,只要三步:1.使用拉普拉斯算子提取轮廓 2.使用双边滤波器对图像进行平滑 3.根据第一步得到的轮廓模版图,将第二步的结果拷贝过去【填充轮廓图中全白的部分】
由于我的笔记本摄像头坏了,故我的程序读取的是手机拍摄的视频。
下面给出我整理的两段代码:
1.边缘提取:
// GetMySketch.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include<iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> using namespace std; using namespace cv; int _tmain(int argc, _TCHAR* argv[]) { VideoCapture m_caputre("test2.avi"); Mat m_frame,gray,edges,masks; const int MEDIAN_BLUR_FILTER_SIZE = 7; const int LAPLACIAN_FILTER_SIZE = 5; const int EDGES_THRESHOLD = 80; while (true) { m_caputre>>m_frame; if (m_frame.empty()) { std::cerr << "ERROR: Couldn't grab a video frame." << std::endl; exit(1); } cvtColor(m_frame,gray,CV_BGR2GRAY); medianBlur(gray,gray,MEDIAN_BLUR_FILTER_SIZE); Laplacian(gray, edges, CV_8U, LAPLACIAN_FILTER_SIZE); threshold(edges, masks, EDGES_THRESHOLD, 255, THRESH_BINARY_INV); // Display the processed image onto the screen. imshow("keep smile :)", masks); char keypress = cv::waitKey(20); // Need this to see anything! if (keypress==27) { break; } } return 0; }边缘检测结果:
// ColorPainting_Cartoon.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include<iostream> #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> using namespace std; using namespace cv; int _tmain(int argc, _TCHAR* argv[]) { VideoCapture m_capture("test2.avi"); Mat m_frame,smallImg,tmp,bigImg,gray,edges,masks,dst; int repetitions = 7; // Repetitions for strong cartoon effect. const int MEDIAN_BLUR_FILTER_SIZE = 7; const int LAPLACIAN_FILTER_SIZE = 5; const int EDGES_THRESHOLD = 80; m_capture>>m_frame; Size size = m_frame.size(); Size smallSize; smallSize.width = size.width/2; smallSize.height = size.height/2; smallImg = Mat(smallSize, CV_8UC3); tmp = Mat(smallSize, CV_8UC3); dst= Mat(size,CV_8UC3); while (true) { m_capture>>m_frame; if (m_frame.empty()) { std::cerr << "ERROR: Couldn't grab a video frame." << std::endl; exit(1); } cvtColor(m_frame,gray,CV_BGR2GRAY); medianBlur(gray,gray,MEDIAN_BLUR_FILTER_SIZE); Laplacian(gray, edges, CV_8U, LAPLACIAN_FILTER_SIZE); threshold(edges, masks, EDGES_THRESHOLD, 255, THRESH_BINARY_INV); resize(m_frame, smallImg, smallSize, 0,0, INTER_LINEAR); for (int i=0; i<repetitions; i++) { int ksize = 9; // Filter size. Has a large effect on speed. double sigmaColor = 9; // Filter color strength. double sigmaSpace = 7; // Spatial strength. Affects speed. bilateralFilter(smallImg, tmp, ksize, sigmaColor, sigmaSpace); bilateralFilter(tmp, smallImg, ksize, sigmaColor, sigmaSpace); } resize(smallImg, bigImg, size, 0,0, INTER_LINEAR); dst.setTo(0); //! copies those matrix elements to "m" that are marked with non-zero mask elements. bigImg.copyTo(dst,masks); // Display the processed image onto the screen. imshow("keep smile :)", dst); char keypress = cv::waitKey(20); // Need this to see anything! if (keypress==27) { break; } } return 0; }最终效果图:
第一章很简单,后面的肤色模型很水,就没去弄。下一篇,为实现如何将上述代码移植到android平台上。