hadoop下的Kmeans算法实现二

输入数据,保存在2.txt中:(1,1) (9,9) (2,3) (10,30) (4,4) (34,40) (5,6) (15,20)

3.txt用于保存临时的中心

part-r-00000用于保存reduce的结果

程序的mapreduce过程及结果:

初始化过程:(10,30) (2,3) 
13/01/26 08:58:38 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
13/01/26 08:58:38 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
13/01/26 08:58:38 WARN mapred.JobClient: No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
13/01/26 08:58:38 INFO input.FileInputFormat: Total input paths to process : 2
13/01/26 08:58:38 WARN snappy.LoadSnappy: Snappy native library not loaded
13/01/26 08:58:38 INFO mapred.JobClient: Running job: job_local_0001
13/01/26 08:58:39 INFO util.ProcessTree: setsid exited with exit code 0
13/01/26 08:58:39 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@15718f2
13/01/26 08:58:39 INFO mapred.MapTask: io.sort.mb = 100
13/01/26 08:58:39 INFO mapred.MapTask: data buffer = 79691776/99614720
13/01/26 08:58:39 INFO mapred.MapTask: record buffer = 262144/327680
0list:1
0c:10
1list:1
1c:30
中心点(2,3)对应坐标(1,1)
Mapper输出:(2,3) (1,1)
0list:9
0c:10
1list:9
1c:30
中心点(2,3)对应坐标(9,9)
Mapper输出:(2,3) (9,9)
0list:2
0c:10
1list:3
1c:30
中心点(2,3)对应坐标(2,3)
Mapper输出:(2,3) (2,3)
0list:10
0c:10
1list:30
1c:30
中心点(10,30)对应坐标(10,30)
Mapper输出:(10,30) (10,30)
0list:4
0c:10
1list:4
1c:30
中心点(2,3)对应坐标(4,4)
Mapper输出:(2,3) (4,4)
0list:34
0c:10
1list:40
1c:30
中心点(10,30)对应坐标(34,40)
Mapper输出:(10,30) (34,40)
0list:5
0c:10
1list:6
1c:30
中心点(2,3)对应坐标(5,6)
Mapper输出:(2,3) (5,6)
0list:15
0c:10
1list:20
1c:30
中心点(10,30)对应坐标(15,20)
Mapper输出:(10,30) (15,20)
13/01/26 08:58:39 INFO mapred.MapTask: Starting flush of map output
13/01/26 08:58:39 INFO mapred.MapTask: Finished spill 0
13/01/26 08:58:39 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
13/01/26 08:58:39 INFO mapred.JobClient:  map 0% reduce 0%
13/01/26 08:58:42 INFO mapred.LocalJobRunner: 
13/01/26 08:58:42 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.
13/01/26 08:58:42 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@77eaf8
13/01/26 08:58:42 INFO mapred.MapTask: io.sort.mb = 100
13/01/26 08:58:42 INFO mapred.MapTask: data buffer = 79691776/99614720
13/01/26 08:58:42 INFO mapred.MapTask: record buffer = 262144/327680
0list:2
0c:10
1list:3
1c:30
中心点(2,3)对应坐标(2,3)
Mapper输出:(2,3) (2,3)
0list:10
0c:10
1list:30
1c:30
中心点(10,30)对应坐标(10,30)
Mapper输出:(10,30) (10,30)
0list:34
0c:10
1list:40
1c:30
中心点(10,30)对应坐标(34,40)
Mapper输出:(10,30) (34,40)
0list:1
0c:10
1list:1
1c:30
中心点(2,3)对应坐标(1,1)
Mapper输出:(2,3) (1,1)
13/01/26 08:58:42 INFO mapred.MapTask: Starting flush of map output
13/01/26 08:58:42 INFO mapred.MapTask: Finished spill 0
13/01/26 08:58:42 INFO mapred.Task: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting
13/01/26 08:58:42 INFO mapred.JobClient:  map 100% reduce 0%
13/01/26 08:58:45 INFO mapred.LocalJobRunner: 
13/01/26 08:58:45 INFO mapred.Task: Task 'attempt_local_0001_m_000001_0' done.
13/01/26 08:58:45 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@18d7ace
13/01/26 08:58:45 INFO mapred.LocalJobRunner: 
13/01/26 08:58:45 INFO mapred.Merger: Merging 2 sorted segments
13/01/26 08:58:45 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 192 bytes
13/01/26 08:58:45 INFO mapred.LocalJobRunner: 
Reduce过程第一次
(10,30)Reduce
val:(10,30)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@141fab6
temlength:2
val:(34,40)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@141fab6
temlength:2
val:(10,30)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@141fab6
temlength:2
val:(34,40)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@141fab6
temlength:2
val:(15,20)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@141fab6
temlength:2
count:5
outVal:(10,30) (34,40) (10,30) (34,40) (15,20) /outVal
ave0i103.0
ave1i160.0
写入part:(10,30) (10,30) (34,40) (10,30) (34,40) (15,20)  (20.6,32.0)
Reduce过程第一次
(2,3)Reduce
val:(1,1)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@141fab6
temlength:2
val:(9,9)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@141fab6
temlength:2
val:(2,3)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@141fab6
temlength:2
val:(4,4)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@141fab6
temlength:2
val:(5,6)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@141fab6
temlength:2
val:(2,3)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@141fab6
temlength:2
val:(1,1)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@141fab6
temlength:2
count:7
outVal:(1,1) (9,9) (2,3) (4,4) (5,6) (2,3) (1,1) /outVal
ave0i24.0
ave1i27.0
写入part:(2,3) (1,1) (9,9) (2,3) (4,4) (5,6) (2,3) (1,1)  (3.4285715,3.857143)
13/01/26 08:58:45 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
13/01/26 08:58:45 INFO mapred.LocalJobRunner: 
13/01/26 08:58:45 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now
13/01/26 08:58:45 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://localhost:9000/home/administrator/hadoop/kmeans/output
13/01/26 08:58:48 INFO mapred.LocalJobRunner: reduce > reduce
13/01/26 08:58:48 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
13/01/26 08:58:48 INFO mapred.JobClient:  map 100% reduce 100%
13/01/26 08:58:48 INFO mapred.JobClient: Job complete: job_local_0001
13/01/26 08:58:48 INFO mapred.JobClient: Counters: 22
13/01/26 08:58:48 INFO mapred.JobClient:   File Output Format Counters 
13/01/26 08:58:48 INFO mapred.JobClient:     Bytes Written=129
13/01/26 08:58:48 INFO mapred.JobClient:   FileSystemCounters
13/01/26 08:58:48 INFO mapred.JobClient:     FILE_BYTES_READ=1818
13/01/26 08:58:48 INFO mapred.JobClient:     HDFS_BYTES_READ=450
13/01/26 08:58:48 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=122901
13/01/26 08:58:48 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=171
13/01/26 08:58:48 INFO mapred.JobClient:   File Input Format Counters 
13/01/26 08:58:48 INFO mapred.JobClient:     Bytes Read=82
13/01/26 08:58:48 INFO mapred.JobClient:   Map-Reduce Framework
13/01/26 08:58:48 INFO mapred.JobClient:     Map output materialized bytes=200
13/01/26 08:58:48 INFO mapred.JobClient:     Map input records=2
13/01/26 08:58:48 INFO mapred.JobClient:     Reduce shuffle bytes=0
13/01/26 08:58:48 INFO mapred.JobClient:     Spilled Records=24
13/01/26 08:58:48 INFO mapred.JobClient:     Map output bytes=164
13/01/26 08:58:48 INFO mapred.JobClient:     Total committed heap usage (bytes)=498860032
13/01/26 08:58:48 INFO mapred.JobClient:     CPU time spent (ms)=0
13/01/26 08:58:48 INFO mapred.JobClient:     SPLIT_RAW_BYTES=262
13/01/26 08:58:48 INFO mapred.JobClient:     Combine input records=0
13/01/26 08:58:48 INFO mapred.JobClient:     Reduce input records=12
13/01/26 08:58:48 INFO mapred.JobClient:     Reduce input groups=2
13/01/26 08:58:48 INFO mapred.JobClient:     Combine output records=0
13/01/26 08:58:48 INFO mapred.JobClient:     Physical memory (bytes) snapshot=0
13/01/26 08:58:48 INFO mapred.JobClient:     Reduce output records=2
13/01/26 08:58:48 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=0
13/01/26 08:58:48 INFO mapred.JobClient:     Map output records=12
13/01/26 08:58:48 INFO mapred.JobClient: Running job: job_local_0001
13/01/26 08:58:48 INFO mapred.JobClient: Job complete: job_local_0001
13/01/26 08:58:48 INFO mapred.JobClient: Counters: 22
13/01/26 08:58:48 INFO mapred.JobClient:   File Output Format Counters 
13/01/26 08:58:48 INFO mapred.JobClient:     Bytes Written=129
13/01/26 08:58:48 INFO mapred.JobClient:   FileSystemCounters
13/01/26 08:58:48 INFO mapred.JobClient:     FILE_BYTES_READ=1818
13/01/26 08:58:48 INFO mapred.JobClient:     HDFS_BYTES_READ=450
13/01/26 08:58:48 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=122901
13/01/26 08:58:48 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=171
13/01/26 08:58:48 INFO mapred.JobClient:   File Input Format Counters 
13/01/26 08:58:48 INFO mapred.JobClient:     Bytes Read=82
13/01/26 08:58:48 INFO mapred.JobClient:   Map-Reduce Framework
13/01/26 08:58:48 INFO mapred.JobClient:     Map output materialized bytes=200
13/01/26 08:58:48 INFO mapred.JobClient:     Map input records=2
13/01/26 08:58:48 INFO mapred.JobClient:     Reduce shuffle bytes=0
13/01/26 08:58:48 INFO mapred.JobClient:     Spilled Records=24
13/01/26 08:58:48 INFO mapred.JobClient:     Map output bytes=164
13/01/26 08:58:48 INFO mapred.JobClient:     Total committed heap usage (bytes)=498860032
13/01/26 08:58:48 INFO mapred.JobClient:     CPU time spent (ms)=0
13/01/26 08:58:48 INFO mapred.JobClient:     SPLIT_RAW_BYTES=262
13/01/26 08:58:48 INFO mapred.JobClient:     Combine input records=0
13/01/26 08:58:48 INFO mapred.JobClient:     Reduce input records=12
13/01/26 08:58:48 INFO mapred.JobClient:     Reduce input groups=2
13/01/26 08:58:48 INFO mapred.JobClient:     Combine output records=0
13/01/26 08:58:48 INFO mapred.JobClient:     Physical memory (bytes) snapshot=0
13/01/26 08:58:48 INFO mapred.JobClient:     Reduce output records=2
13/01/26 08:58:48 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=0
13/01/26 08:58:48 INFO mapred.JobClient:     Map output records=12
上一次MapReduce结果:第一行:(10,30)	(10,30) (34,40) (10,30) (34,40) (15,20) (20.6,32.0)
第二行:(2,3)	(1,1) (9,9) (2,3) (4,4) (5,6) (2,3) (1,1) (3.4285715,3.857143)
。
0坐标距离:116.36001
1坐标距离:2.7755103
新中心点:(20.6,32.0) (3.4285715,3.857143) 
13/01/26 08:58:49 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
13/01/26 08:58:49 WARN mapred.JobClient: No job jar file set.  User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
13/01/26 08:58:49 INFO input.FileInputFormat: Total input paths to process : 2
13/01/26 08:58:49 INFO mapred.JobClient: Running job: job_local_0002
13/01/26 08:58:49 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@18aab40
13/01/26 08:58:49 INFO mapred.MapTask: io.sort.mb = 100
13/01/26 08:58:49 INFO mapred.MapTask: data buffer = 79691776/99614720
13/01/26 08:58:49 INFO mapred.MapTask: record buffer = 262144/327680
0list:1
0c:20.6
1list:1
1c:32.0
中心点(3.4285715,3.857143)对应坐标(1,1)
Mapper输出:(3.4285715,3.857143) (1,1)
0list:9
0c:20.6
1list:9
1c:32.0
中心点(3.4285715,3.857143)对应坐标(9,9)
Mapper输出:(3.4285715,3.857143) (9,9)
0list:2
0c:20.6
1list:3
1c:32.0
中心点(3.4285715,3.857143)对应坐标(2,3)
Mapper输出:(3.4285715,3.857143) (2,3)
0list:10
0c:20.6
1list:30
1c:32.0
中心点(20.6,32.0)对应坐标(10,30)
Mapper输出:(20.6,32.0) (10,30)
0list:4
0c:20.6
1list:4
1c:32.0
中心点(3.4285715,3.857143)对应坐标(4,4)
Mapper输出:(3.4285715,3.857143) (4,4)
0list:34
0c:20.6
1list:40
1c:32.0
中心点(20.6,32.0)对应坐标(34,40)
Mapper输出:(20.6,32.0) (34,40)
0list:5
0c:20.6
1list:6
1c:32.0
中心点(3.4285715,3.857143)对应坐标(5,6)
Mapper输出:(3.4285715,3.857143) (5,6)
0list:15
0c:20.6
1list:20
1c:32.0
中心点(20.6,32.0)对应坐标(15,20)
Mapper输出:(20.6,32.0) (15,20)
13/01/26 08:58:49 INFO mapred.MapTask: Starting flush of map output
13/01/26 08:58:49 INFO mapred.MapTask: Finished spill 0
13/01/26 08:58:49 INFO mapred.Task: Task:attempt_local_0002_m_000000_0 is done. And is in the process of commiting
13/01/26 08:58:50 INFO mapred.JobClient:  map 0% reduce 0%
13/01/26 08:58:52 INFO mapred.LocalJobRunner: 
13/01/26 08:58:52 INFO mapred.Task: Task 'attempt_local_0002_m_000000_0' done.
13/01/26 08:58:52 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@147358f
13/01/26 08:58:52 INFO mapred.MapTask: io.sort.mb = 100
13/01/26 08:58:52 INFO mapred.MapTask: data buffer = 79691776/99614720
13/01/26 08:58:52 INFO mapred.MapTask: record buffer = 262144/327680
0list:2
0c:20.6
1list:3
1c:32.0
中心点(3.4285715,3.857143)对应坐标(2,3)
Mapper输出:(3.4285715,3.857143) (2,3)
0list:10
0c:20.6
1list:30
1c:32.0
中心点(20.6,32.0)对应坐标(10,30)
Mapper输出:(20.6,32.0) (10,30)
0list:34
0c:20.6
1list:40
1c:32.0
中心点(20.6,32.0)对应坐标(34,40)
Mapper输出:(20.6,32.0) (34,40)
0list:1
0c:20.6
1list:1
1c:32.0
中心点(3.4285715,3.857143)对应坐标(1,1)
Mapper输出:(3.4285715,3.857143) (1,1)
13/01/26 08:58:52 INFO mapred.MapTask: Starting flush of map output
13/01/26 08:58:52 INFO mapred.MapTask: Finished spill 0
13/01/26 08:58:52 INFO mapred.Task: Task:attempt_local_0002_m_000001_0 is done. And is in the process of commiting
13/01/26 08:58:53 INFO mapred.JobClient:  map 100% reduce 0%
13/01/26 08:58:55 INFO mapred.LocalJobRunner: 
13/01/26 08:58:55 INFO mapred.Task: Task 'attempt_local_0002_m_000001_0' done.
13/01/26 08:58:55 INFO mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@2798e7
13/01/26 08:58:55 INFO mapred.LocalJobRunner: 
13/01/26 08:58:55 INFO mapred.Merger: Merging 2 sorted segments
13/01/26 08:58:55 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 317 bytes
13/01/26 08:58:55 INFO mapred.LocalJobRunner: 
Reduce过程第一次
(20.6,32.0)Reduce
val:(10,30)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@13043d2
temlength:2
val:(34,40)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@13043d2
temlength:2
val:(10,30)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@13043d2
temlength:2
val:(34,40)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@13043d2
temlength:2
val:(15,20)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@13043d2
temlength:2
count:5
outVal:(10,30) (34,40) (10,30) (34,40) (15,20) /outVal
ave0i103.0
ave1i160.0
写入part:(20.6,32.0) (10,30) (34,40) (10,30) (34,40) (15,20)  (20.6,32.0)
Reduce过程第一次
(3.4285715,3.857143)Reduce
val:(1,1)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@13043d2
temlength:2
val:(9,9)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@13043d2
temlength:2
val:(2,3)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@13043d2
temlength:2
val:(4,4)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@13043d2
temlength:2
val:(5,6)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@13043d2
temlength:2
val:(2,3)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@13043d2
temlength:2
val:(1,1)
values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@13043d2
temlength:2
count:7
outVal:(1,1) (9,9) (2,3) (4,4) (5,6) (2,3) (1,1) /outVal
ave0i24.0
ave1i27.0
写入part:(3.4285715,3.857143) (1,1) (9,9) (2,3) (4,4) (5,6) (2,3) (1,1)  (3.4285715,3.857143)
13/01/26 08:58:55 INFO mapred.Task: Task:attempt_local_0002_r_000000_0 is done. And is in the process of commiting
13/01/26 08:58:55 INFO mapred.LocalJobRunner: 
13/01/26 08:58:55 INFO mapred.Task: Task attempt_local_0002_r_000000_0 is allowed to commit now
13/01/26 08:58:55 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0002_r_000000_0' to hdfs://localhost:9000/home/administrator/hadoop/kmeans/output
13/01/26 08:58:58 INFO mapred.LocalJobRunner: reduce > reduce
13/01/26 08:58:58 INFO mapred.Task: Task 'attempt_local_0002_r_000000_0' done.
13/01/26 08:58:59 INFO mapred.JobClient:  map 100% reduce 100%
13/01/26 08:58:59 INFO mapred.JobClient: Job complete: job_local_0002
13/01/26 08:58:59 INFO mapred.JobClient: Counters: 22
13/01/26 08:58:59 INFO mapred.JobClient:   File Output Format Counters 
13/01/26 08:58:59 INFO mapred.JobClient:     Bytes Written=148
13/01/26 08:58:59 INFO mapred.JobClient:   FileSystemCounters
13/01/26 08:58:59 INFO mapred.JobClient:     FILE_BYTES_READ=4442
13/01/26 08:58:59 INFO mapred.JobClient:     HDFS_BYTES_READ=1262
13/01/26 08:58:59 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=246235
13/01/26 08:58:59 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=676
13/01/26 08:58:59 INFO mapred.JobClient:   File Input Format Counters 
13/01/26 08:58:59 INFO mapred.JobClient:     Bytes Read=82
13/01/26 08:58:59 INFO mapred.JobClient:   Map-Reduce Framework
13/01/26 08:58:59 INFO mapred.JobClient:     Map output materialized bytes=325
13/01/26 08:58:59 INFO mapred.JobClient:     Map input records=2
13/01/26 08:58:59 INFO mapred.JobClient:     Reduce shuffle bytes=0
13/01/26 08:58:59 INFO mapred.JobClient:     Spilled Records=24
13/01/26 08:58:59 INFO mapred.JobClient:     Map output bytes=289
13/01/26 08:58:59 INFO mapred.JobClient:     Total committed heap usage (bytes)=667418624
13/01/26 08:58:59 INFO mapred.JobClient:     CPU time spent (ms)=0
13/01/26 08:58:59 INFO mapred.JobClient:     SPLIT_RAW_BYTES=262
13/01/26 08:58:59 INFO mapred.JobClient:     Combine input records=0
13/01/26 08:58:59 INFO mapred.JobClient:     Reduce input records=12
13/01/26 08:58:59 INFO mapred.JobClient:     Reduce input groups=2
13/01/26 08:58:59 INFO mapred.JobClient:     Combine output records=0
13/01/26 08:58:59 INFO mapred.JobClient:     Physical memory (bytes) snapshot=0
13/01/26 08:58:59 INFO mapred.JobClient:     Reduce output records=2
13/01/26 08:58:59 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=0
13/01/26 08:58:59 INFO mapred.JobClient:     Map output records=12
13/01/26 08:58:59 INFO mapred.JobClient: Running job: job_local_0002
13/01/26 08:58:59 INFO mapred.JobClient: Job complete: job_local_0002
13/01/26 08:58:59 INFO mapred.JobClient: Counters: 22
13/01/26 08:58:59 INFO mapred.JobClient:   File Output Format Counters 
13/01/26 08:58:59 INFO mapred.JobClient:     Bytes Written=148
13/01/26 08:58:59 INFO mapred.JobClient:   FileSystemCounters
13/01/26 08:58:59 INFO mapred.JobClient:     FILE_BYTES_READ=4442
13/01/26 08:58:59 INFO mapred.JobClient:     HDFS_BYTES_READ=1262
13/01/26 08:58:59 INFO mapred.JobClient:     FILE_BYTES_WRITTEN=246235
13/01/26 08:58:59 INFO mapred.JobClient:     HDFS_BYTES_WRITTEN=676
13/01/26 08:58:59 INFO mapred.JobClient:   File Input Format Counters 
13/01/26 08:58:59 INFO mapred.JobClient:     Bytes Read=82
13/01/26 08:58:59 INFO mapred.JobClient:   Map-Reduce Framework
13/01/26 08:58:59 INFO mapred.JobClient:     Map output materialized bytes=325
13/01/26 08:58:59 INFO mapred.JobClient:     Map input records=2
13/01/26 08:58:59 INFO mapred.JobClient:     Reduce shuffle bytes=0
13/01/26 08:58:59 INFO mapred.JobClient:     Spilled Records=24
13/01/26 08:58:59 INFO mapred.JobClient:     Map output bytes=289
13/01/26 08:58:59 INFO mapred.JobClient:     Total committed heap usage (bytes)=667418624
13/01/26 08:58:59 INFO mapred.JobClient:     CPU time spent (ms)=0
13/01/26 08:58:59 INFO mapred.JobClient:     SPLIT_RAW_BYTES=262
13/01/26 08:58:59 INFO mapred.JobClient:     Combine input records=0
13/01/26 08:58:59 INFO mapred.JobClient:     Reduce input records=12
13/01/26 08:58:59 INFO mapred.JobClient:     Reduce input groups=2
13/01/26 08:58:59 INFO mapred.JobClient:     Combine output records=0
13/01/26 08:58:59 INFO mapred.JobClient:     Physical memory (bytes) snapshot=0
13/01/26 08:58:59 INFO mapred.JobClient:     Reduce output records=2
13/01/26 08:58:59 INFO mapred.JobClient:     Virtual memory (bytes) snapshot=0
13/01/26 08:58:59 INFO mapred.JobClient:     Map output records=12
上一次MapReduce结果:第一行:(20.6,32.0)	(10,30) (34,40) (10,30) (34,40) (15,20) (20.6,32.0)
第二行:(3.4285715,3.857143)	(1,1) (9,9) (2,3) (4,4) (5,6) (2,3) (1,1) (3.4285715,3.857143)
。
0坐标距离:0.0
1坐标距离:0.0
新中心点:(20.6,32.0) (3.4285715,3.857143) 
Iterator: 2



你可能感兴趣的:(hadoop下的Kmeans算法实现二)