《C++语言基础》实践参考——复数类中的运算符重载

返回:贺老师课程教学链接


【项目1-实现复数类中的运算符重载】
(1)请用类的成员函数,定义复数类重载运算符+、-、*、/,使之能用于复数的加减乘除
class Complex 
{
public:
    Complex(){real=0;imag=0;}
    Complex(double r,double i){real=r; imag=i;}
    Complex operator+(const Complex &c2);
    Complex operator-(const Complex &c2);
    Complex operator*(const Complex &c2);
    Complex operator/(const Complex &c2);
    void display();
private:
    double real;
    double imag;
};
//下面定义成员函数


//下面定义用于测试的main()函数
int main()
{
    Complex c1(3,4),c2(5,-10),c3;
    cout<<"c1=";
    c1.display();
    cout<<"c2=";
    c2.display();
    c3=c1+c2;
    cout<<"c1+c2=";
    c3.display();
    c3=c1-c2;
    cout<<"c1-c2=";
    c3.display();
    c3=c1*c2;
    cout<<"c1*c2=";
    c3.display();
    c3=c1/c2;
    cout<<"c1/c2=";
    c3.display();
    return 0;
}
[参考解答]
#include <iostream>
using namespace std;
class Complex
{
public:
    Complex(){real=0;imag=0;}
    Complex(double r,double i){real=r; imag=i;}
    Complex operator+(const Complex &c2);
    Complex operator-(const Complex &c2);
    Complex operator*(const Complex &c2);
    Complex operator/(const Complex &c2);
    void display();
private:
    double real;
    double imag;
};
//下面定义成员函数
//复数相加: (a+bi)+(c+di)=(a+c)+(b+d)i.
Complex Complex::operator+(const Complex &c2)
{
    Complex c;
    c.real=real+c2.real;
    c.imag=imag+c2.imag;
    return c;
}
//复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i.
Complex Complex::operator-(const Complex &c2)
{
    Complex c;
    c.real=real-c2.real;
    c.imag=imag-c2.imag;
    return c;
}
//复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
Complex Complex::operator*(const Complex &c2)
{
    Complex c;
    c.real=real*c2.real-imag*c2.imag;
    c.imag=imag*c2.real+real*c2.imag;
    return c;
}

//复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)i
Complex Complex::operator/(const Complex &c2)
{
    Complex c;
    c.real=(real*c2.real+imag*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag);
    c.imag=(imag*c2.real-real*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag);
    return c;
}

void Complex::display()
{
    cout<<"("<<real<<","<<imag<<"i)"<<endl;
}
//下面定义用于测试的main()函数
int main()
{
    Complex c1(3,4),c2(5,-10),c3;
    cout<<"c1=";
    c1.display();
    cout<<"c2=";
    c2.display();
    c3=c1+c2;
    cout<<"c1+c2=";
    c3.display();
    c3=c1-c2;
    cout<<"c1-c2=";
    c3.display();
    c3=c1*c2;
    cout<<"c1*c2=";
    c3.display();
    c3=c1/c2;
    cout<<"c1/c2=";
    c3.display();
    return 0;
}

(2)请用类的友元函数,而不是成员函数,再次完成上面提及的运算符的重载;
[参考解答]
#include <iostream>
using namespace std;
class Complex
{
public:
    Complex()
    {
        real=0;
        imag=0;
    }
    Complex(double r,double i)
    {
        real=r;
        imag=i;
    }
    friend Complex operator+(Complex &c1, Complex &c2);
    friend Complex operator-(Complex &c1, Complex &c2);
    friend Complex operator*(Complex &c1, Complex &c2);
    friend Complex operator/(Complex &c1, Complex &c2);
    void display();
private:
    double real;
    double imag;
};

//复数相加:(a+bi)+(c+di)=(a+c)+(b+d)i.
Complex operator+(Complex &c1, Complex &c2)
{
    Complex c;
    c.real=c1.real+c2.real;
    c.imag=c1.imag+c2.imag;
    return c;
}

//复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i.
Complex operator-(Complex &c1, Complex &c2)
{
    Complex c;
    c.real=c1.real-c2.real;
    c.imag=c1.imag-c2.imag;
    return c;
}

//复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
Complex operator*(Complex &c1, Complex &c2)
{
    Complex c;
    c.real=c1.real*c2.real-c1.imag*c2.imag;
    c.imag=c1.imag*c2.real+c1.real*c2.imag;
    return c;
}

//复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)i
Complex operator/(Complex &c1, Complex &c2)
{
    Complex c;
    c.real=(c1.real*c2.real+c1.imag*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag);
    c.imag=(c1.imag*c2.real-c1.real*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag);
    return c;
}

void Complex::display()
{
    cout<<"("<<real<<","<<imag<<"i)"<<endl;
}

int main()
{
    Complex c1(3,4),c2(5,-10),c3;
    cout<<"c1=";
    c1.display();
    cout<<"c2=";
    c2.display();
    c3=c1+c2;
    cout<<"c1+c2=";
    c3.display();
    c3=c1-c2;
    cout<<"c1-c2=";
    c3.display();
    c3=c1*c2;
    cout<<"c1*c2=";
    c3.display();
    c3=c1/c2;
    cout<<"c1/c2=";
    c3.display();
    return 0;
}

  事实上,运算符重载的函数还可以定义成一般函数,只不过这种做法并不好。下面给出使用一般函数完成运算符重载的程序。其中,加了序号的几处注释值得关注。

#include <iostream>
using namespace std;
class Complex
{
public:
    Complex()
    {
        real=0;
        imag=0;
    }
    Complex(double r,double i)
    {
        real=r;
        imag=i;
    }
    double getReal() const
    {
        return real;   //(1)定义公用的数据接口,可以为const成员函数
    }
    double getImag() const
    {
        return imag;
    }
    void setReal(double r)
    {
        real=r;   //(1)定义公用的数据接口
    }
    void setImag(double i)
    {
        imag=i;
    }


    void display();
private:
    double real;
    double imag;
};

//复数相加:(a+bi)+(c+di)=(a+c)+(b+d)i.
Complex operator+(const Complex &c1, const Complex &c2) //(3)将参数处理为const更符合需求
{
    Complex c;
    c.setReal(c1.getReal()+c2.getReal());   //(2)调用公用数据接口读取和修改私有数据成员
    c.setImag(c1.getImag()+c2.getImag());
    return c;
}

//复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i.
Complex operator-(const Complex &c1, const Complex &c2)
{
    Complex c;
    c.setReal(c1.getReal()-c2.getReal());
    c.setImag(c1.getImag()-c2.getImag());
    return c;
}

//复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
Complex operator*(const Complex &c1, const Complex &c2)
{
    Complex c;
    c.setReal(c1.getReal()*c2.getReal()-c1.getImag()*c2.getImag());
    c.setImag(c1.getImag()*c2.getReal()+c1.getReal()*c2.getImag());
    return c;
}

//复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)i
Complex operator/(const Complex &c1, const Complex &c2)
{
    Complex c;
    double d= (c2.getReal()*c2.getReal()+c2.getImag()*c2.getImag());
    c.setReal((c1.getReal()*c2.getReal()+c1.getImag()*c2.getImag())/d);
    c.setImag((c1.getImag()*c2.getReal()-c1.getReal()*c2.getImag())/d);
    return c;
}

void Complex::display()
{
    cout<<"("<<real<<","<<imag<<"i)"<<endl;
}

int main()
{
    Complex c1(3,4),c2(5,-10),c3;
    cout<<"c1=";
    c1.display();
    cout<<"c2=";
    c2.display();
    c3=c1+c2;
    cout<<"c1+c2=";
    c3.display();
    c3=c1-c2;
    cout<<"c1-c2=";
    c3.display();
    c3=c1*c2;
    cout<<"c1*c2=";
    c3.display();
    c3=c1/c2;
    cout<<"c1/c2=";
    c3.display();
    return 0;
}


(3)定义一个定义完整的类(是可以当作独立的产品发布,成为众多项目中的“基础工程”)。这样的类在(2)的基础上,扩展+、-、*、/运算符的功能,使之能与double型数据进行运算。设Complex c; double d; c+d和d+c的结果为“将d视为实部为d的复数同c相加”,其他-、*、/运算符类似。
[参考解答]
#include <iostream>
using namespace std;
class Complex
{
public:
    Complex()
    {
        real=0;
        imag=0;
    }
    Complex(double r,double i)
    {
        real=r;
        imag=i;
    }
    friend Complex operator+(Complex &c1, Complex &c2);
    friend Complex operator+(double d1, Complex &c2);
    friend Complex operator+(Complex &c1, double d2);
    friend Complex operator-(Complex &c1, Complex &c2);
    friend Complex operator-(double d1, Complex &c2);
    friend Complex operator-(Complex &c1, double d2);
    friend Complex operator*(Complex &c1, Complex &c2);
    friend Complex operator*(double d1, Complex &c2);
    friend Complex operator*(Complex &c1, double d2);
    friend Complex operator/(Complex &c1, Complex &c2);
    friend Complex operator/(double d1, Complex &c2);
    friend Complex operator/(Complex &c1, double d2);
    void display();
private:
    double real;
    double imag;
};

//复数相加:(a+bi)+(c+di)=(a+c)+(b+d)i.
Complex operator+(Complex &c1, Complex &c2)
{
    Complex c;
    c.real=c1.real+c2.real;
    c.imag=c1.imag+c2.imag;
    return c;
}
Complex operator+(double d1, Complex &c2)
{
    Complex c(d1,0);
    return c+c2; //按运算法则计算的确可以,但充分利用已经定义好的代码,既省人力,也避免引入新的错误,但可能机器的效率会不佳
}
Complex operator+(Complex &c1, double d2)
{
    Complex c(d2,0);
    return c1+c;
}
//复数相减:(a+bi)-(c+di)=(a-c)+(b-d)i.
Complex operator-(Complex &c1, Complex &c2)
{
    Complex c;
    c.real=c1.real-c2.real;
    c.imag=c1.imag-c2.imag;
    return c;
}
Complex operator-(double d1, Complex &c2)
{
    Complex c(d1,0);
    return c-c2;
}
Complex operator-(Complex &c1, double d2)
{
    Complex c(d2,0);
    return c1-c;
}

//复数相乘:(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
Complex operator*(Complex &c1, Complex &c2)
{
    Complex c;
    c.real=c1.real*c2.real-c1.imag*c2.imag;
    c.imag=c1.imag*c2.real+c1.real*c2.imag;
    return c;
}
Complex operator*(double d1, Complex &c2)
{
    Complex c(d1,0);
    return c*c2;
}
Complex operator*(Complex &c1, double d2)
{
    Complex c(d2,0);
    return c1*c;
}

//复数相除:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2) +(bc-ad)/(c^2+d^2)i
Complex operator/(Complex &c1, Complex &c2)
{
    Complex c;
    c.real=(c1.real*c2.real+c1.imag*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag);
    c.imag=(c1.imag*c2.real-c1.real*c2.imag)/(c2.real*c2.real+c2.imag*c2.imag);
    return c;
}
Complex operator/(double d1, Complex &c2)
{
    Complex c(d1,0);
    return c/c2;
}
Complex operator/(Complex &c1, double d2)
{
    Complex c(d2,0);
    return c1/c;
}

void Complex::display()
{
    cout<<"("<<real<<","<<imag<<"i)"<<endl;
}

int main()
{
    Complex c1(3,4),c2(5,-10),c3;
    double d=11;
    cout<<"c1=";
    c1.display();
    cout<<"c2=";
    c2.display();
    cout<<"d="<<d<<endl<<endl;
    cout<<"下面是重载运算符的计算结果: "<<endl;
    c3=c1+c2;
    cout<<"c1+c2=";
    c3.display();
    cout<<"c1+d=";
    (c1+d).display();
    cout<<"d+c1=";
    (d+c1).display();
    c3=c1-c2;
    cout<<"c1-c2=";
    c3.display();
    cout<<"c1-d=";
    (c1-d).display();
    cout<<"d-c1=";
    (d-c1).display();
    c3=c1*c2;
    cout<<"c1*c2=";
    c3.display();
    cout<<"c1*d=";
    (c1*d).display();
    cout<<"d*c1=";
    (d*c1).display();
    c3=c1/c2;
    cout<<"c1/c2=";
    c3.display();
    cout<<"c1/d=";
    (c1/d).display();
    cout<<"d/c1=";
    (d/c1).display();
    return 0;
}

你可能感兴趣的:(《C++语言基础》实践参考——复数类中的运算符重载)