- OpenCV高阶操作
富士达幸运星
opencv人工智能计算机视觉
在图像处理与计算机视觉领域,OpenCV(OpenSourceComputerVisionLibrary)无疑是最为强大且广泛使用的工具之一。从基础的图像读取、1.图片的上下,采样下采样(Downsampling)下采样通常用于减小图像的尺寸,从而减少图像中的像素数。这个过程可以通过多种方法实现,但最常见的是通过图像金字塔中的pyrDown函数(在OpenCV中)或其他类似的滤波器(如平均池化、最
- 【机器学习】近似推断的基本概念以及变分贝叶斯的基本概念
Lossya
机器学习人工智能python贝叶斯网络变分贝叶斯近似推断
引言近似推断是处理大规模或复杂概率图模型时常用的一种方法,特别是在精确推断变得不可行或不实际的情况下文章目录引言一、近似推断1.1常见的近似推断方法1.1.1采样方法(SamplingMethods)1.1.1.1马尔可夫链蒙特卡洛(MCMC)1.1.1.2重要性采样(ImportanceSampling)1.1.1.3蒙特卡洛模拟(MonteCarloSimulation)1.1.2变分推断(V
- 【激活函数总结】Pytorch中的激活函数详解: ReLU、Leaky ReLU、Sigmoid、Tanh 以及 Softmax
阿_旭
深度学习知识点pytorch人工智能python激活函数深度学习
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.
- 两种常用损失函数:nn.CrossEntropyLoss 与 nn.TripletMarginLoss
大多_C
人工智能算法python机器学习
两种用于模型训练的损失函数:nn.CrossEntropyLoss和nn.TripletMarginLoss。它们在对比学习和分类任务中各自扮演不同的角色。接下来是对这两种损失函数的详细介绍。1.nn.CrossEntropyLossnn.CrossEntropyLoss是PyTorch提供的交叉熵损失函数,通常用于多分类任务中。它结合了softmax激活函数和负对数似然损失(NegativeLo
- 解决AttributeError: module ‘PIL.Image‘ has no attribute ‘ANTIALIAS‘
前行居士
javascript开发语言ecmascriptpytorchpythonubuntu
报错如下:因为当前版本PIL==10.0.1经查询文档发现所以需将Image.ANTIALIAS改为Image.Resampling.LANCZOS问题解决
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
脚步的影子
语言模型embeddingbert
目录一、预训练1.1图像领域的预训练1.2预训练的思想二、语言模型2.1统计语言模型2.2神经网络语言模型三、词向量3.1独热(Onehot)编码3.2WordEmbedding四、Word2Vec模型五、自然语言处理的预训练模型六、RNN和LSTM6.1RNN6.2RNN的梯度消失问题6.3LSTM6.4LSTM解决RNN的梯度消失问题七、ELMo模型7.1ELMo的预训练7.2ELMo的Fea
- YOLO缺陷检测学习笔记(2)
tt555555555555
YOLO缺陷检测学习笔记YOLO学习笔记
YOLO缺陷检测学习笔记(2)残差连接1.**YOLO的残差连接结构**2.**YOLO使用残差连接的目的**3.**YOLO中的残差块**4.**YOLOv3和YOLOv4的残差连接架构**YOLO网络架构概述1.特征提取网络2.预测头(DetectionHead)3.后处理(Post-processing)YOLOv3/v4的改进YOLOv3YOLOv4SoftmaxSoftmax的性质:So
- 【大模型实战篇】大模型周边NLP技术回顾及预训练模型数据预处理过程解析(预告)
源泉的小广场
大模型自然语言处理人工智能大模型LLM预训练模型数据预处理高质量数据
1.背景介绍进入到大模型时代,似乎宣告了与过去自然语言处理技术的结束,但其实这两者并不矛盾。大模型时代,原有的自然语言处理技术,依然可以在大模型的诸多场景中应用,特别是对数据的预处理阶段。本篇主要关注TextCNN、FastText和Word2Vec等低成本的自然语言处理技术,如何在大模型时代发挥其余热。今天先抛出这个主题预告,接下来会花些时间,逐步细化分析这些周边技术的算法原理、数学分析以及大模
- 理解Softmax函数的原理和实现
Ven%
深度学习基础动手自然语言处理人工智能深度学习机器学习python
Softmax函数是机器学习和深度学习中非常基础且重要的一个概念,特别是在处理分类问题时。它的作用是将一个向量中的元素值转换成概率分布,使得每个元素的值都在0到1之间,并且所有元素值的总和为1。原理Softmax函数的数学表达式定义如下:softmax(zi)=ezi∑jezj\text{softmax}(z_i)=\frac{e^{z_i}}{\sum_{j}e^{z_j}}softmax(zi
- 【论文简介】Circle Loss: A Unified Perspective of Pair Similarity Optimization
萝莉狼
machinelearningcirclelossdeepfeaturelearning
CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization旷世cvpr2020的一篇文章,站在更高的视角,统一了deepfeaturelearning的两大基础loss:基于class-levellabel的loss(如softmax+crossentropy)和基于pair-wiselabel的loss(如tripletloss),指出了
- 自然语言处理系列五十一》文本分类算法》Python快速文本分类器FastText
陈敬雷-充电了么-CEO兼CTO
算法人工智能大数据自然语言处理分类pythonchatgpt人工智能ai机器学习
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理FastText和Word2vec的区别FastText代码实战总结自然语言处理系列五十一Python开源快速文本分类器FastText》算法原理自然语言处理(N
- 每天一个数据分析题(五百二十)- 词嵌入模型
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
关于词嵌入模型,以下说法错误的是?A.GloVe模型属于词嵌入模型B.Word2Vec模型属于词嵌入模型C.词袋模型属于词嵌入模型D.词嵌入模型基本假设是出现在相似的上下文中的词含义相似数据分析认证考试介绍:点击进入数据分析考试大纲下载题目来源于CDA模拟题库点击此处获取答案
- 每天一个数据分析题(五百二十一)- 词袋模型
跟着紫枫学姐学CDA
数据分析题库数据分析
词袋模型(英语:Bag-of-wordsmodel)是个在自然语言处理和信息检索(IR)下被简化的表达模型。以下关于词袋模型(BagofWord,BoW)的说法正确的是?A.将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个词语都是独立的B.词袋模型只能应用在文件分类C.CBOW是词袋模型的一种D.GloVe模型是词袋模型的一种数据分析认证考试介绍:点击进入数据分析考试大纲下载题目来源于C
- CnOpenData公共数据专区上新 | 中文金融情感词典
CnOpenData
数据列表深度学习python自然语言处理
中文金融情感词典一、数据简介 姜富伟教授及其研究团队于2021年第4期《经济学(季刊)》发表了《媒体文本情绪与股票回报预测》,并在文中介绍了一项极富创造力的金融学科研究成果——中文金融情感词典。 “本文在LoughranandMacDonald(2011)词典的基础上通过人工筛选和word2vec算法扩充,构建了一个更新更全面的中文金融情感词典。我们使用该情感词典计算我国财经媒体文本情绪指标,
- Transformer面试真题详解——覆盖99%的Transformer面试问题(建议收藏)
爱睡觉的咋
LLMtransformer深度学习人工智能
文章目录1.请简述一下Transformer的基本结构和原理2.Transformer为什么使用多头注意力机制3.Transformer计算attention为什么选择点乘而不是加法?两个计算复杂度和效果上有什么区别?4.为什么在softmax之后要对attention进行scaled(为什么除以d_k的平方根)5.在计算attentionscore时,如何对padding做mask操作6.简单介
- 基于Python的机器学习系列(18):梯度提升分类(Gradient Boosting Classification)
会飞的Anthony
信息系统机器学习人工智能机器学习python分类
简介梯度提升(GradientBoosting)是一种集成学习方法,通过逐步添加新的预测器来改进模型。在回归问题中,我们使用梯度来最小化残差。在分类问题中,我们可以利用梯度提升来进行二分类或多分类任务。与回归不同,分类问题需要使用如softmax这样的概率模型来处理类别标签。梯度提升分类的工作原理梯度提升分类的基本步骤与回归类似,但在分类任务中,我们使用概率模型来处理预测结果:初始化模型:选择一个
- Datawhale X 李宏毅苹果书 AI夏令营 进阶 Task2-自适应学习率+分类
沙雕是沙雕是沙雕
人工智能学习深度学习
目录1.自适应学习率1.1AdaGrad1.2RMSProp1.3Adam1.4学习率调度1.5优化策略的总结2.分类2.1分类与回归的关系2.2带有softmax的分类2.3分类损失1.自适应学习率传统的梯度下降方法在优化过程中常常面临学习率设置不当的问题。固定的学习率在训练初期可能过大,导致模型训练不稳定,而在后期可能过小,导致训练速度缓慢。为了克服这些问题,自适应学习率方法应运而生。这些方法
- YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10结合全新多尺度动态增强注意力机制DSAttention(全网独家创新)
小李学AI
YOLOv10有效涨点专栏YOLO深度学习计算机视觉人工智能目标检测神经网络
1.DSAttention介绍DSAttention注意力机制在图像特征提取中具有以下优点:(1).全局信息捕捉能力:DSAttention机制通过使用软注意力机制(SoftmaxAttention)来计算特征图的全局相关性。这种方式能够更好地捕捉图像中的全局信息,有助于增强对复杂场景或大尺度物体的识别能力。(2).多尺度信息融合:该机制引入了多尺度卷积操作,包括不同大小的卷积核(如5x5、1x7
- 深度学习100问10-什么是CBOW模型
不断持续学习ing
人工智能自然语言处理机器学习深度学习
CBOW(ContinuousBagofWords)模型是一种用于训练词向量的方法。想象一下,CBOW就像是一个猜词游戏。它从一个文本中选取一个词作为目标词,然后把这个目标词周围的几个词当成线索。CBOW的任务就是根据这些线索来猜出目标词是什么。为了完成这个任务,CBOW会先把这些线索词(周围的词)都转换成向量,然后把这些向量加起来或者求平均,得到一个综合的向量表示。接着,CBOW会用这个综合向量
- 芯片后端之 PT 使用 report_timing 产生报告 之 -include_hierarchical_pins 选项
那么菜
GLS网表仿真那些应该啃得硬骨头PrimeTime
今天,我们再学习一点点后仿真相关技能。那就是,了解report_timing中的-include_hierarchical_pins选项。如果我们仅仅使用如下命令,执行后会发现:pt_shell>report_timing-fromFF1/CK-toFF2/d-delay_typemax我们使用命令report_timing报出的如上路径延时信息,仅仅显示:(1)FF1寄存器CK->Q路径延迟(2
- 23 注意力机制—BERT
Unknown To Known
动手学习深度学习bert人工智能深度学习
目录BERT预训练NLP里的迁移学习BERTBERT动机BERT预训练NLP里的迁移学习在计算机视觉中比较流行,将ImageNet或者更大的数据集上预训练好的模型应用到其他任务中,比如小数据的预测、图片分类或者是目标检测使用预训练好的模型(例如word2vec或语言模型)来抽取词、句子的特征做迁移学习的时候,一般不更新预训练好的模型在更换任务之后,还是需要构建新的网络来抓取新任务需要的信息使用预训
- keras.optimizers优化器中文文档
地上悬河
python开发语言后端
优化器optimizers优化器是编译Keras模型必要的两个参数之一model=Sequential()model.add(Dense(64,init='uniform',input_dim=10))model.add(Activation('tanh'))model.add(Activation('softmax'))sgd=SGD(lr=0.01,decay=1e-6,momentum=0.
- Analysis of Negative Sampling Methods for Knowledge Graph Embedding
小蜗子
知识图谱负采样知识图谱embedding人工智能
摘要负采样是一种用于加速知识图嵌入学习和最大化嵌入模型在链接预测和实体解析等支持任务中的有效性的方法。负采样对于提高准确性、减少偏差、提高效率和改善代表性至关重要。本文仔细研究了在基准数据集Fb15k上,张量分解和平移嵌入模型的两种基本负采样技术增加每正负采样数量的后果。对于均匀抽样和伯努利抽样,值得注意的是,基于每阳性负的数量增加而显示性能变化的模式。我们的目标是确定不同的负采样参数对张量分解模
- 深度学习——第8章 深层神经网络(DNN)
曲入冥
深度学习深度学习神经网络dnn机器学习人工智能
第8章深层神经网络(DNN)目录8.1神经网络为什么要深?8.2深层神经网络标记符号8.3正向传播8.4反向传播8.5多分类Softmax8.6总结上一课是实战内容,我们使用Python一步步搭建了一个最简单的神经网络模型,只包含单层隐藏层。并使用这个简单模型对非线性可分的样本集进行分类,最终得到了不错的分类效果。本节将继续从深度神经网络入手,介绍深层神经网络的数学原理和推导过程。8.1神经网络为
- 如何使用Python绘制常见的几种激活函数?
神笔馬良
python开发语言
问题描述:如何使用Python绘制常见的几种激活函数?(sigmoid、Tanh、Relu、LeakyRelu、ELU、Softplus、Softmax、Smish)解答:这里八种不同的激活函数,使用了不同的颜色进行了绘制。#importpandasaspd#fromscipyimportstatsimportmathimportmatplotlib.pyplotaspltimportnumpya
- 基于seq2seq的SKchat语言模型
eric-sjq
语言模型人工智能自然语言处理
SKchat语言模型是由小思框架开放的中文语言模型,基于seq2seq以及word2vec。v3模型的对话功能界面~在代码方面,我们优化了seq2seq算法,降低了内存的占用,并构建了新的模型。whileTrue:model.fit([x_encoder,x_decoder],y,batchsize,1,verbose=1,)"""解码模型"""decoder_h_input=Input(shap
- 【自然语言处理】:实验1布置,Word2Vec&TranE的实现
X.AI666
自然语言处理人工智能机器学习自然语言处理
清华大学驭风计划因为篇幅原因实验答案分开上传,答案链接http://t.csdnimg.cn/5cyMG如果需要详细的实验报告或者代码可以私聊博主有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~实验1:Word2Vec&TranE的实现案例简介Word2Vec是词嵌入的经典模型,它通过词之间的上下文信息来建模词的相似度。TransE是知识表示学习领域的经典模型,它借鉴了Word2Ve
- Python 将一维数组或矩阵变为三维
勤奋的大熊猫
Python科学计算基础python
Python将一维数组或矩阵变为三维正文正文话不多说直接上代码:importnumpyasnpsampling_points=10001arr=np.linspace(0,2,sampling_points)arr_3D=arr.reshape(1,1,-1)print(arr_3D)"""result:[[[0.0000e+002.0000e-044.0000e-04...1.9996e+001
- Python 将二维数组或矩阵变为三维
勤奋的大熊猫
Python科学计算基础python矩阵
Python将二维数组或矩阵变为三维引言正文基础拓展引言之前,我们已经介绍过了Python将一维数组或矩阵变为三维。然而,很多时候,我们也需要对二维矩阵进行操作,这里特来介绍一下如何将二维矩阵扩展为三维。阅读这一篇前推荐优先阅读np.concatenate()函数。正文基础importnumpyasnpsampling_points=10001arr=np.array([[1,2],[3,4]])
- 从零实现softmax回归【基于Pytorch】
卡仕达酱
回归pytorch人工智能机器学习python
参考资料:沐神——动手学深度学习importtorchimporttorchvisionfrommatplotlibimportpyplotaspltfromtorch.utilsimportdatafromtorchvisionimporttransformsfromd2limporttorchasd2lfromIPythonimportdisplaydefget_dataloader_work
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs