OpenRisc-4-ORSoC跑linux实验

引言

光说不练假把式,本小节就用官方的FPGA开发板跑一下linux。

 

4.1,  实验准备

1》  orsoc的工具链环境(gcc,gdbjtag),搭建过程见上一篇blog:

http://blog.csdn.net/rill_zhen/article/details/8443882

2》  ep4ce22FPGA开发板(€:149)

3》  micro-USB连接线

 

4.2,  实验步骤

0》连线。将板子左上方的那个USB口与PC相连。

1》  烧写RTL综合后的电路逻辑文件(也可自己用quartus综合)

$ cd /home/openrisc

$ jtag ./program_fpga.jtag

2》开启gdbdebuggerOR processor间的代理服务

$ /opt/or_debug_proxy/bin/or_debug_proxy –r 55555

3》  (再开一个终端)打开一个串口终端

picocom –b 115200–p n –d 8 –f xon /dev/ttyUSB2

4》  (再开一个终端)开启gdb来下载vmlinux镜像

$ cd ~/soc-design/linux

$ make ARCH=openrisc defconfig

$ make ARCH=openrisc

$ or32-elf-gdb

(gdb) target remote :55555

(gdb) file ./vmlinux

Answer ‘y’

(gdb) load

(gdb) spr npc 0x100

(gdb) c

5》此时,看picocom那个终端,可以看到linux的启动过程:如下图:

6》此时链接网线,设置网卡(eth8)参数,就可以和PC通过网络通信了。

 

OpenRisc-4-ORSoC跑linux实验_第1张图片

 

 

4.3 参考文档

Running_SW_on_FPGA_board.txt:

 

 

===========================================================
Running Software on Hardware
===========================================================

This FPGA development board has been developed specifically 
to fit a OpenRISC processor design, with the smallest form-factor 
and lowest cost.

The board is called: ordb2a-ep4ce22 (OpenRisc Development Board 2A)

More detailed information can be found at the link below:
http://opencores.org/or1k/ordb2a-ep4ce22


===========================================================
Connecting ORSoC's OpenRISC-FPGA-development-board
===========================================================

1. Connect your ordb2a-board to your computer using the 
   USB connector located on the top-left corner on the board.

2. The FPGA is programmed with a pre-compiled OpenRISC
   processor SOC-design, with Ethernet, SDHC, UART and 
   SDRAM support. And with a small boot-loader (orpmon) that is 
   stored in the external SPI-flash. The boot-loader should 
   now be loaded and executing by the OpenRISC processor.

3. Open up a new terminal and type:
   $ picocom --b 115200 --p n --d 8 --f xon /dev/ttyUSB2

   Press "Enter" and you should now see a print-out in your 
   terminal-window showing: ORSoC devboard>

   You now have a command-prompt "ORSoC devboard>" controlling 
   the orpmon-software.
   By typing "help", all the diffent commands will be listed. 
   For example you can start a coremark-test (cpu benchmark test), 
   by typing "coremark 30"


===============================================================
Program ORSoC's OpenRISC-FPGA-development-board and run Linux
===============================================================

1. Connect your ordb2a-board to your computer using the 
   USB connector located on the top-left corner on the board.

2. Start a terminal and type:
   $ cd ~/fpga_dev_board/ordb2a-ep4ce22
   $ jtag ./program_fpga.jtag

   The file "program_fpga.jtag" defines what FPGA programming file 
   that should be used.

3. The FPGA is now programmed with a pre-compiled OpenRISC
   processor SOC-design, with the OpenRISC processor, Ethernet, 
   SDHC, UART and SDRAM support. An small boot-loader is stored 
   in the SPI-flash and should now be loaded and executed 
   by the OpenRISC processor.

4. Let's now try and download Linux to the SDRAM and then boot it
   on the OpenRISC SoC design. There are many ways that we can 
   boot Linux, we can use GDB, we can use orpmon and download it 
   using TFTP, or we can program the SPI-flash. We will using GDB
   in demo. Open up a new terminal tab (shift+ctrl+t) and type:
   $ /opt/or_debug_proxy/bin/or_debug_proxy -r 55555

   This starts a program (or_debug_proxy) that controls the 
   USB connection and communication between the GDB debugger and 
   the OpenRISC processor.
 
   You should see the follwoing print-out:

   "
   Connecting to OR1k via USB debug cable
   Initialising USB JTAG interface
   JTAG ID = a188a928
   Stalling OR1K CPU0
   Read      npc = 0001727c ppc = 00017278 r1 = 00031774
   Waiting for gdb connection on localhost:55555
   Press CTRL+c to exit.
   "

5. Open up a new terminal tab (shift+ctrl+t) and type:
   $ picocom --b 115200 --p n --d 8 --f xon /dev/ttyUSB2

   This UART connection will be our Linux-terminal when we boot-up 
   Linux on the OpenRISC SoC-design.


6. Open up a new terminal tab (shift+ctrl+t) and type:
   $ cd ~/soc-design/linux
   $ make ARCH=openrisc defconfig
   $ make ARCH=openrisc
   $ or32-elf-gdb

   The GDB-debugger is now started and you need to connect it to
   the or_debug_proxy program, by typing:
   (gdb) target remote :55555

   GDB is now connected to the OpenRISC processor and are now 
   waiting. Lets now download the Linux-image, by typing:
   (gdb) file ./vmlinux
   Answer "y" on the questions.

   (gdb) load

   The actual download of the Linux image is now in progress and 
   this takes some time, since the JTAG interface is not the 
   fastest one. The following load information should appear:

   "
   Loading section .text, size 0x22bd34 lma 0x0
   Loading section .rodata, size 0x49860 lma 0x22c000
   Loading section __param, size 0x1c0 lma 0x275860
   Loading section .data, size 0x15760 lma 0x276000
   Loading section __ex_table, size 0xa50 lma 0x28b760
   Loading section .head.text, size 0x4000 lma 0x28e000
   Loading section .init.text, size 0x12348 lma 0x292000
   Loading section .init.data, size 0x155e54 lma 0x2a4360
   Start address 0xc0000000, load size 4160160
   Transfer rate: 86 KB/sec, 4015 bytes/write.
   "

   Now we want to set the program-counter to start executing 
   from address 0x100, by typing:
   (gdb) spr npc 0x100

   Now let's boot up Linux on the FPGA development board, by typing:
   (gdb) c

   You should now see Linux booting in the picocom-terminal-window 
   that was opened earlier. And you should get a prompt where you 
   can play around with the Linux port that is running on the 
   OpenRISC processor system.

   For example, you can plug in your board into your Ethernet network 
   and get an IP address by typing:
   # ifup eth0

   Your network should now provide your board with an IP address (DHCP) 
   and you can test your connection by pinging a known IP address.


====================================================================
Program ORSoC's OpenRISC-FPGA-development-board with bare-metal SW
====================================================================

1. Connect your ordb2a-board to your computer using the 
   USB connector located on the top-left corner on the board.

2. Start a terminal and type:
   $ cd /home/openrisc
   $ jtag ./program_fpga.jtag

   The file "program_fpga.jtag" defines what FPGA programming file 
   that should be used.

3. The FPGA is now programmed with a pre-compiled OpenRISC
   processor SOC-design, with Ethernet, SDHC, UART and 
   SDRAM support. An small boot-loader is stored in the SPI-flash 
   and should now be loaded and executed by the OpenRISC processor.

4. Let's now try and download a bare-metal application (hello world) to 
   the board and run it. Open up a new terminal and type:
   $ /opt/or_debug_proxy/bin/or_debug_proxy -r 55555

   This starts a program (or_debug_proxy) that controls the 
   USB connection and communication between the GDB debugger and 
   the OpenRISC processor.
 
   You should see the following print-out:

   "
   Connecting to OR1k via USB debug cable
   Initialising USB JTAG interface
   JTAG ID = a188a928
   Stalling OR1K CPU0
   Read      npc = 0001727c ppc = 00017278 r1 = 00031774
   Waiting for gdb connection on localhost:55555
   Press CTRL+c to exit.
   "

5. Open up a new terminal and type:
   $ picocom --b 115200 --p n --d 8 --f xon /dev/ttyUSB2

   This UART connection will be a UART-terminal and will 
   receive the Helloworld application's printf text.


6. Open up a new terminal and type:
   $ cd ~/soc-design/helloworld-or1ksim
   $ or32-elf-gdb

   The GDB debugger is now started and you need to connect it to
   the or_debug_proxy program, by typing:
   (gdb) target remote :55555

   GDB is now connected to the OpenRISC processor and are now 
   waiting. Lets now download the Linux-image, by typing:
   (gdb) file ./helloworld_hw
   Answer "y" on the questions.

   (gdb) load

   The actual download of the Helloworld-image is now in progress and 
   this takes some time, since the JTAG interface is not the 
   fastest one. The following load-information should appear:

   "
   Loading section .vectors, size 0x2000 lma 0x0
   Loading section .init, size 0x28 lma 0x2000
   Loading section .text, size 0x494c lma 0x2028
   Loading section .fini, size 0x1c lma 0x6974
   Loading section .rodata, size 0x50 lma 0x6990
   Loading section .eh_frame, size 0x4 lma 0x69e0
   Loading section .ctors, size 0x8 lma 0x89e4
   Loading section .dtors, size 0x8 lma 0x89ec
   Loading section .jcr, size 0x4 lma 0x89f4
   Loading section .data, size 0x9b8 lma 0x89f8
   Start address 0x2028, load size 29616
   Transfer rate: 42 KB/sec, 1851 bytes/write.
   "

   Now we want to set the program-counter to start executing 
   from address 0x100, by typing:
   (gdb) spr npc 0x100

   Now lets start the Helloworld_hw application on the FPGA 
   development board, by typing:
   (gdb) c

   You should now see the follwoing printout in the 
   picocom terminal window that was opened earlier:

   "
   Hello world!!!!
   "

   Now you can start developing your own 
   bare-metal applications :-)


===========================================================
Programming external SPI-flash 
===========================================================
The external SPI flash contains both the FPGA programming file 
and a bootloader (orpmon).
Below are information on how to program the SPI with these two files:


   1. Download an FPGA-programming file that just connects the 
      FTDI JTAG signals to the SPI flash IOs.
      $ cd ~/program-spi-flash
      $ jtag ./program_spi.jtag

   2. Erase the SPI flash before programming it:
      $ ./spiflash/spiflash-program -e


   3. Program the SPI flash with an FPGA programming file (rbf-format):
      $ ./spiflash/spiflash-program -p /home/openrisc/fpga_dev_board/ordb2a-ep4ce22/output_file.rbf

   4. Program the SPI-flash with OpenRISC SW application (select only one):

      4a. Program OpenRISC Linux (requires a large SPI flash):
          $ ./spiflash/spiflash-program -a 0xc0000 -P /home/openrisc/program-spi-flash/vmlinux.sizebin


      4b. Program OpenRISC bootloader (orpmon)
          $ ./spiflash/spiflash-program -a 0xc0000 -P /home/openrisc/program-spi-flash/orpmon.or32.sizebin


Unplug the board and connect it again to load the new flash contents.


Steps 2-4 can also be combined like so (directory paths omitted for brevity):
   spiflash-program -e -p output_file.rbf -a 0xc0000 -P orpmon.or32.sizebin

Sizebin files are produced from binary memory dumps using bin2binsizeword:
   ~/soc-design/orpsocv2/sw/utils/bin2binsizeword ~/soc-design/orpmon/orpmon.or32.bin ~/program-spi-flash/orpmon.or32.sizebin


Good luck and welcome to the OpenCores OpenRISC community ;-)



Delivered by: [email protected], [email protected]
2011-12-15





 

附:bootloader启动

即ORmon的启动:

烧完RTL综合后的逻辑,内部mem初始化文件就是ORmon。用超级终端(windows)或者picocom(ubuntu)都可以,如下图:

OpenRisc-4-ORSoC跑linux实验_第2张图片

 

 附:也可以用单独linux for openrisc

http://git.openrisc.net/cgit.cgi/jonas/linux/refs/tags

 

 

你可能感兴趣的:(OpenRisc-4-ORSoC跑linux实验)