51nod1189

链接:点击打开链接

题意:1/N! = 1/X + 1/Y,给出N,求满足条件的整数解的数量。例如:N = 2,1/2 = 1/3 + 1/6,1/2 = 1/4 + 1/4。由于数量可能很大,输出Mod 10^9 + 7

代码:

#include <iostream>
#include <cmath>
#include <cstring>
#define mod 1000000007
using namespace std;
long long prime[1000005],num[1000005];
int main(){
    long long i,j,k,n,sum,temp,flag,sumsum;
    k=0;
    memset(prime,0,sizeof(prime));
    for(i=2;i<=1000000;i++){
    if(!prime[i])
    num[k++]=i;
    for(j=0;j<k&&num[j]*i<=1000000;j++){
    prime[num[j]*i]=1;
    if(i%num[j]==0)
    break;
    }
    }
    while(cin>>n){
    sumsum=1;
    for(i=0;num[i]<=n;i++){
    temp=n;sum=0;
    while(temp){
        temp/=num[i];
        sum+=temp;
    }
    flag=2*sum+1;               //思路详见http://blog.csdn.net/stay_accept/article/details/47188133
    sumsum=(sumsum*flag)%mod;
    }
//    cout<<sumsum<<endl;
    cout<<((sumsum+1)%mod)*(500000004%mod)%mod<<endl;  //除法取余要用逆元
    }
    return 0;
}
</span>

你可能感兴趣的:(51nod1189)