Hdu 1575 Tr A (线性代数_矩阵)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575


题目大意:给定一个n*n的方阵A,经过A^k计算后对角线和为多少?


解题思路:这不是赤裸裸的矩阵二分快速幂吗?是的,果断模拟快速幂乘,快速幂乘是对整数进行乘法计算,矩阵快速幂是对矩阵进行乘法运算,本质是一样的。


测试数据:

3
2 2
1 0

0 1


3 99999999
1 2 3
4 5 6

7 8 9


3 1
0 0 0
0 0 0
0 0 0


代码:

#include <stdio.h>
#include <string.h>
#define MAX 11
#define MOD 9973


int k,n,ans,arr[MAX][MAX];
struct Mat {

	int mat[MAX][MAX],size;
	Mat(int n) {

		size = n;
		memset(mat,0,sizeof(mat));
	}
	Mat(int arr[][MAX],int n) {

		size = n;
		for (int i = 0; i < size; ++i)
			for (int j = 0; j < size; ++j)
				mat[i][j] = arr[i][j];
	}
	friend Mat operator *(Mat a,Mat b);
	friend Mat operator +(Mat a,Mat b);
	friend Mat operator ^(Mat a,Mat b);
};
Mat operator *(Mat a,Mat b) {

	Mat c(n);
	for (int i = 0; i < a.size; ++i)
		for (int j = 0; j < b.size; ++j)
			for (int k = 0; k < c.size; ++k)
				if (a.mat[i][k] && b.mat[k][j])
					c.mat[i][j] = (c.mat[i][j] + a.mat[i][k] * b.mat[k][j]) % MOD;
	return c;
}
Mat operator +(Mat a,Mat b) {

	Mat c(n);
	for (int i = 0; i < a.size; ++i)
		for (int j = 0; j < b.size; ++j)
			c.mat[i][j] = (a.mat[i][j] + b.mat[i][j]) % MOD;
	return c;
}
Mat operator ^(Mat a,int k) {

	Mat c(n);
	for (int i = 0; i < c.size; ++i)
		c.mat[i][i] = 1;
	while (k) {
		
		if (k & 1) c = c * a;
		a = a * a,k >>= 1;
	}
	return c;
}


int main()
{
	int i,j,t;


	scanf("%d",&t);
	while (t--) {

		scanf("%d%d",&n,&k);
		for (i = 0; i < n; ++i)
			for (j = 0; j < n; ++j)
				scanf("%d",&arr[i][j]);


		Mat c(arr,n);
		c = c ^ k;
		for (ans = i = 0; i < n; ++i)
			ans = (ans + c.mat[i][i]) % MOD;
		printf("%d\n",ans);
	}
}

本文ZeroClock原创,但可以转载,因为我们是兄弟。

你可能感兴趣的:(c,struct,测试)