首先描述问题
给定一个字符串
example:"4-(4-3*5+(2*4)+100)/10";
要求输出结果"-5.70";结果四舍五入,保留两位小数
首先进行的是括号优先级的处理
public BigDecimal calculateString(String str) {
char[] strs = str.toCharArray();
Stack<String> stack = new Stack<String>();
for (int i = 0; i < strs.length; i++) {
String stackStr = String.valueOf(strs[i]);
stack.push(stackStr);
if (")".equals(stack.top())) {
String subStr = null;
while (!"(".equals(stack.top())) {
stack.pop();
if (!"(".equals(stack.top())) {
subStr = addEnd(subStr, stack.top());
}
}
String pushStr = CalculateReversePolishExpression(subStr);
stack.pop();
stack.push(pushStr);
}
}
String resultStr = null;
while (stack.count != 0) {
resultStr = CalculateReversePolishExpression(stack.toString());
}
BigDecimal result = null;
if (resultStr != null) {
result = new BigDecimal(resultStr);
} else {
result = BigDecimal.ZERO;
}
return result.setScale(2, BigDecimal.ROUND_HALF_UP);
}
将每个字符逐一进栈,当扫描到")"时,进行出栈操作,直到栈顶元素等于"("
并记录出栈的"("与")"之间的字符串为subStr
然后是对subStr求后缀表达式,并计算结果
也就是这句代码
String pushStr = CalculateReversePolishExpression(subStr);
再把结果进栈
最后stack的内容是去掉括号的一个四则表达式
再进行一次CalculateReversePolishExpression方法,则得到最终结果
中缀转后缀表达式的基本思路
基本思路如下:
用一个链表 List<String> 储存将要生成的后缀表达式
用一个栈 Stack<String> 储存操作符
判断当前节点, 如果是操作数, 直接加入后缀表达式中, 如果是操作符,则比较前一个操作符和当前操作符的优先级,
如果前一个操作符优先级较高,则将前一个操作符加入后缀表达式中,否则将操作符压入操作符栈,如果遇到反括号 ')', 则在操作符栈中反向搜索,直到遇到匹配的正括号为止,将中间的操作符依次加到后缀表达式中。
然后是后缀表达式的计算
遍历储存后缀表达式的链表,将元素依次进栈,当遇到操作符时,连续出栈两个元素,进行运算,再将结果进栈,最后栈内留下的元素就是计算结果
最后再贴出茫茫多的代码
package graph;
import java.math.BigDecimal;
import java.util.ArrayList;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
/**
*
* 应用:逆波兰表达式
*
* @author Leon.Chen
*
*/
public class CalculateString {
public BigDecimal calculateString(String str) {
char[] strs = str.toCharArray();
Stack<String> stack = new Stack<String>();
for (int i = 0; i < strs.length; i++) {
String stackStr = String.valueOf(strs[i]);
stack.push(stackStr);
if (")".equals(stack.top())) {
String subStr = null;
while (!"(".equals(stack.top())) {
stack.pop();
if (!"(".equals(stack.top())) {
subStr = addEnd(subStr, stack.top());
}
}
String pushStr = CalculateReversePolishExpression(subStr);
stack.pop();
stack.push(pushStr);
}
}
String resultStr = null;
while (stack.count != 0) {
resultStr = CalculateReversePolishExpression(stack.toString());
}
BigDecimal result = null;
if (resultStr != null) {
result = new BigDecimal(resultStr);
} else {
result = BigDecimal.ZERO;
}
return result.setScale(2, BigDecimal.ROUND_HALF_UP);
}
public String[] matcher(String regex, String str) {
Pattern pattern = Pattern.compile(regex);
Matcher matcher = pattern.matcher(str);
List<String> list = new ArrayList<String>();
while (matcher.find()) {
list.add(matcher.group());
}
String[] result = new String[list.size()];
return list.toArray(result);
}
public List<String> createReversePolishExpression(String subStr) {
String regex = "\\d+\\.{0,1}\\d*";
String[] numbers = matcher(regex, subStr);
String changeStr = subStr.replaceAll(regex, "0").replaceAll("\\-\\-0",
"-1").replaceAll("\\+\\-0", "+1").replaceAll("\\*\\-0", "*1")
.replaceAll("\\/\\-0", "/1");
char[] chars = changeStr.toCharArray();
int index = 0;
List<String> list = new ArrayList<String>();
for (int i = 0; i < chars.length; i++) {
String str = String.valueOf(chars[i]);
if ("0".equals(str)) {
list.add(numbers[index++]);
} else if ("1".equals(str)) {
list.add("-" + numbers[index++]);
} else {
list.add(str);
}
}
List<String> suffix = new ArrayList<String>();
Stack<String> operator = new Stack<String>();
for (int i = 0; i < list.size(); i++) {
if (!isOperatorType(list.get(i))) {
suffix.add(list.get(i));
} else {
if (operator.count == 0) {
operator.push(list.get(i));
} else {
while (operator.count != 0&&compare(operator.top(), list.get(i)) >= 0) {
String top = operator.top();
operator.pop();
suffix.add(top);
}
operator.push(list.get(i));
}
}
}
while (operator.count != 0) {
suffix.add(operator.top());
operator.pop();
}
return suffix;
}
public String CalculateReversePolishExpression(String subStr) {
List<String> suffix = createReversePolishExpression(subStr);
Stack<Double> stack = new Stack<Double>();
for (int i = 0; i < suffix.size(); i++) {
if (!isOperatorType(suffix.get(i))) {
stack.push(Double.valueOf(suffix.get(i)));
} else {
Double current = stack.top();
stack.pop();
Double previous = null;
if (stack.count != 0) {
previous = stack.top();
stack.pop();
} else {
previous = new Double(0);
}
Double result = calculate(suffix.get(i), previous, current);
stack.push(result);
}
}
return stack.top().toString();
}
public String addEnd(String str, String a) {
StringBuffer buf = new StringBuffer();
buf.append(a);
if (str != null) {
buf.append(str);
}
return buf.toString();
}
public boolean isOperatorType(String str) {
if (str.equals("+") || str.equals("-") || str.equals("*")
|| str.equals("/")) {
return true;
}
return false;
}
public int compare(String op1, String op2) {
Integer iop1 = getOperator(op1);
Integer iop2 = getOperator(op2);
return iop1.compareTo(iop2);
}
public Integer getOperator(String op) {
if ("+".equals(op) || "-".equals(op)) {
return new Integer(0);
}
if ("*".equals(op) || "/".equals(op)) {
return new Integer(1);
}
return null;
}
public Double calculate(String op, Double previous, Double current) {
if ("+".equals(op)) {
return previous + current;
}
if ("-".equals(op)) {
return previous - current;
}
if ("*".equals(op)) {
return previous * current;
}
if ("/".equals(op)) {
return previous / current;
}
return null;
}
public static void main(String[] args) {
String[] strs = new String[]{"(5+6)*7","(-1)/(-3)","1/(-3)","-1/7","7+(3*5)-(8+20/2)","4-(4-3*5+(2*4)+100)/10"};
for(int i=0;i<strs.length;i++){
BigDecimal result = new CalculateString().calculateString(strs[i]);
System.out.println(result.toString());
}
}
}
自己写的stack
package graph;
public class Stack<T> {
public StackNode<T> stackTop;
public int count;
public void push(T info) {
StackNode<T> node = new StackNode<T>();
node.info = info;
node.link = stackTop;
stackTop = node;
count++;
}
public void pop() {
if(stackTop == null) {
System.out.println("null stack");
} else {
stackTop = stackTop.link;
count--;
}
}
public boolean isEmpty() {
return count == 0;
}
public T top() {
if(stackTop == null) {
return null;
}
return stackTop.info;
}
public String toString(){
Stack<T> other = new Stack<T>();
while(count != 0){
T top = top();
pop();
other.push(top);
}
StringBuffer buf = new StringBuffer();
while(other.count !=0){
buf.append(other.top());
other.pop();
}
return buf.toString();
}
}
stack节点
package graph;
public class StackNode<T> {
public StackNode<T> link;
public T info;
}
懒得copy的话下载附件