Squares
Description
A square is a 4-sided polygon whose sides have equal length and adjacent sides form 90-degree angles. It is also a polygon such that rotating about its centre by 90 degrees gives the same polygon. It is not the only polygon with the latter property, however, as a regular octagon also has this property.
So we all know what a square looks like, but can we find all possible squares that can be formed from a set of stars in a night sky? To make the problem easier, we will assume that the night sky is a 2-dimensional plane, and each star is specified by its x and y coordinates. Input
The input consists of a number of test cases. Each test case starts with the integer n (1 <= n <= 1000) indicating the number of points to follow. Each of the next n lines specify the x and y coordinates (two integers) of each point. You may assume that the points are distinct and the magnitudes of the coordinates are less than 20000. The input is terminated when n = 0.
Output
For each test case, print on a line the number of squares one can form from the given stars.
Sample Input 4 1 0 0 1 1 1 0 0 9 0 0 1 0 2 0 0 2 1 2 2 2 0 1 1 1 2 1 4 -2 5 3 7 0 0 5 2 0 Sample Output 1 6 1 Source
Rocky Mountain 2004
|
题目:http://poj.org/problem?id=2002
题意:给你n个点,问从n个点里面挑出4个点组成不同正方形的个数
分析:最容易想到的方法就是枚举两个点,那么另两个点就可以求出来,求出来后判断下这两个点是否存在,存在就+1,具体的判断只需要把所有点hash下就行
代码:
#include<cstdio> #include<iostream> #include<cstring> using namespace std; const int mm=1111; const int mod=100007; struct point { int x,y; }g[mm]; struct hashTable { int h[mod],p[mod],size; point s[mod]; int hash(int x,int y) { return ((x*131+y+mod)&0x7FFFFFFF)%mod; } void insert(int x,int y) { int i,id=hash(x,y); for(i=h[id];i>=0;i=p[i]) if(s[i].x==x&&s[i].y==y)return; s[size].x=x,s[size].y=y; p[size]=h[id],h[id]=size++; } int find(int x,int y) { int i,id=hash(x,y); for(i=h[id];i>0;i=p[i]) if(s[i].x==x&&s[i].y==y)return i; return 0; } void clear() { size=1; memset(h,-1,sizeof(h)); } }ht; bool check(point P,point Q) { int add1=P.y-Q.y,add2=Q.x-P.x; return ht.find(P.x+add1,P.y+add2)&&ht.find(Q.x+add1,Q.y+add2); } int main() { int i,j,n,ans; while(scanf("%d",&n),n) { ht.clear(); for(i=0;i<n;++i) { scanf("%d%d",&g[i].x,&g[i].y); ht.insert(g[i].x,g[i].y); } for(ans=i=0;i<n;++i) for(j=0;j<n;++j) if(i!=j&&check(g[i],g[j]))++ans; printf("%d\n",ans/4); } return 0; }