机器学习(三)k均值聚类

k均值聚类

原文地址http://blog.csdn.net/hjimce/article/details/45200985

作者:hjimce

高斯混合模型和k均值聚类是聚类算法中的两种比较常用而简单的算法,这里先介绍k均值聚类算法。

一、K-means算法理论简介

K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。K-means算法以欧式距离作为相似度测度,它是求对应某一初始聚类中心向量V最优分类,使得评价指标J最小。算法采用误差平方和准则函数作为聚类准则函数,总之就是要使得下面的公式最小化:


算法过程如下:
1)从N个文档随机选取K个文档作为质心
2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类
3)重新计算已经得到的各个类的质心
4)迭代2~3步直至新的质心与原质心相等或小于指定阈值,算法结束

二、K-means算法实现

K均值聚类算法实现分为四个步骤,设数据集为二维data,用matlab把数据绘制出来,如下所示:

绘制代码:


绘制结果:

 机器学习(三)k均值聚类_第1张图片

现在假设要把该数据集分为4类,算法步骤如下:

1) 初始化聚类中心

由于聚类个数选择4,因此我们用matlab随机生成4个不重复的整数,且大小不超过数据点的个数,得到初始聚类中心A,B,C,D

2) 计算每个点分别到4个聚类中心的距离,找出最小的那个。假设点p为数据集中的点,求出ABCD中距离p点最近的那个点,设B距离P最近,那么就把p点聚类为B类。

3) 更新聚类中心。根据步骤2可得数据集的聚类结果,根据聚类结果,计算每个类的重心位置,作为更新的聚类中心。然后返回步骤2,重新进行聚类,如此循环步骤2与步骤3,直到迭代收敛。

最后贴一下代码:

close all; clear; clc; % %生成高斯分布随机数1 % mu = [2 3]; % SIGMA = [1 0; 0 2]; % r1 = mvnrnd(mu,SIGMA,100); % plot(r1(:,1),r1(:,2),'r+'); % hold on; % %生成高斯分布随机数1 % mu = [7 8]; % SIGMA = [ 1 0; 0 2]; % r2 = mvnrnd(mu,SIGMA,100); % plot(r2(:,1),r2(:,2),'*') % % data=[r1;r2] data=importdata('data.txt'); % 算法流程 figure(1); plot(data(:,1),data(:,2),'*'); figure(2); [m n]=size(data); %聚类个数为4,则4个不重复的整数 p=randperm(m); kn=4; d=p(1:kn); center(1:kn,:)=data(d(:),:); flag=zeros(1,m); %计算每个点到4个质心点的最近的那个点 it=1; while(it<30 for="" ii="1:m;" flag="" ii="" -1="" mindist="inf;" for="" jj="1:kn;" dst="norm(data(ii,:)-center(jj,:));" if="" mindist="">dst; mindist=dst; flag(ii)=jj; end end end %更新聚类中心 center=zeros(size(center)); countflag=zeros(1,kn); for ii=1:m for jj=1:kn if(flag(ii)==jj) center(jj,:)=center(jj,:)+data(ii,:); countflag(jj)=countflag(jj)+1; end end end for jj=1:kn center(jj,:)=center(jj,:)./countflag(jj); end it=it+1; end hold on; for i=1:m; if(flag(i)==1); plot(data(i,1),data(i,2),'.y'); elseif flag(i)==2 plot(data(i,1),data(i,2),'.b'); elseif (flag(i)==3) plot(data(i,1),data(i,2),'.k'); elseif (flag(i)==4) plot(data(i,1),data(i,2),'.r'); end end</30>

聚类结果如下:

机器学习(三)k均值聚类_第2张图片


opencv版kmeans:
声明:
enum
{
    KMEANS_RANDOM_CENTERS=0, // Chooses random centers for k-Means initialization
    KMEANS_PP_CENTERS=2,     // Uses k-Means++ algorithm for initialization
    KMEANS_USE_INITIAL_LABELS=1 // Uses the user-provided labels for K-Means initialization
};
//! clusters the input data using k-Means algorithm
CV_EXPORTS_W double kmeans( InputArray data, int K, CV_OUT InputOutputArray bestLabels,
                            TermCriteria criteria, int attempts,
                            int flags, OutputArray centers=noArray() );
实现函数:
double kmeans( const Mat& data, int K, Mat& best_labels,
               TermCriteria criteria, int attempts,
               int flags, Mat* _centers )
{
    const int SPP_TRIALS = 3;
    int N = data.rows > 1 ? data.rows : data.cols;
    int dims = (data.rows > 1 ? data.cols : 1)*data.channels();
    int type = data.depth();
    bool simd = checkHardwareSupport(CV_CPU_SSE);
    attempts = std::max(attempts, 1);
    CV_Assert( type == CV_32F && K > 0 );
    Mat _labels;
    if( flags & CV_KMEANS_USE_INITIAL_LABELS )
    {
        CV_Assert( (best_labels.cols == 1 || best_labels.rows == 1) &&
                  best_labels.cols*best_labels.rows == N &&
                  best_labels.type() == CV_32S &&
                  best_labels.isContinuous());
        best_labels.copyTo(_labels);
    }
    else
    {
        if( !((best_labels.cols == 1 || best_labels.rows == 1) &&
             best_labels.cols*best_labels.rows == N &&
            best_labels.type() == CV_32S &&
            best_labels.isContinuous()))
            best_labels.create(N, 1, CV_32S);
        _labels.create(best_labels.size(), best_labels.type());
    }
    int* labels = _labels.ptr<int>();
    Mat centers(K, dims, type), old_centers(K, dims, type);
    vector<int> counters(K);
    vector<Vec2f> _box(dims);
    Vec2f* box = &_box[0];
    double best_compactness = DBL_MAX, compactness = 0;
    RNG& rng = theRNG();
    int a, iter, i, j, k;
    if( criteria.type & TermCriteria::EPS )
        criteria.epsilon = std::max(criteria.epsilon, 0.);
    else
        criteria.epsilon = FLT_EPSILON;
    criteria.epsilon *= criteria.epsilon;
    if( criteria.type & TermCriteria::COUNT )
        criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100);
    else
        criteria.maxCount = 100;
    if( K == 1 )
    {
        attempts = 1;
        criteria.maxCount = 2;
    }
    const float* sample = data.ptr<float>(0);
    for( j = 0; j < dims; j++ )
        box[j] = Vec2f(sample[j], sample[j]);
    for( i = 1; i < N; i++ )
    {
        sample = data.ptr<float>(i);
        for( j = 0; j < dims; j++ )
        {
            float v = sample[j];
            box[j][0] = std::min(box[j][0], v);
            box[j][1] = std::max(box[j][1], v);
        }
    }
    for( a = 0; a < attempts; a++ )
    {
        double max_center_shift = DBL_MAX;
        for( iter = 0; iter < criteria.maxCount && max_center_shift > criteria.epsilon; iter++ )
        {
            swap(centers, old_centers);
            if( iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)) )
            {
                if( flags & KMEANS_PP_CENTERS )
                    generateCentersPP(data, centers, K, rng, SPP_TRIALS);
                else
                {
                    for( k = 0; k < K; k++ )
                        generateRandomCenter(_box, centers.ptr<float>(k), rng);
                }
            }
            else
            {
                if( iter == 0 && a == 0 && (flags & KMEANS_USE_INITIAL_LABELS) )
                {
                    for( i = 0; i < N; i++ )
                        CV_Assert( (unsigned)labels[i] < (unsigned)K );
                }
           
                // compute centers
                centers = Scalar(0);
                for( k = 0; k < K; k++ )
                    counters[k] = 0;
                for( i = 0; i < N; i++ )
                {
                    sample = data.ptr<float>(i);
                    k = labels[i];
                    float* center = centers.ptr<float>(k);
                    for( j = 0; j <= dims - 4; j += 4 )
                    {
                        float t0 = center[j] + sample[j];
                        float t1 = center[j+1] + sample[j+1];
                        center[j] = t0;
                        center[j+1] = t1;
                        t0 = center[j+2] + sample[j+2];
                        t1 = center[j+3] + sample[j+3];
                        center[j+2] = t0;
                        center[j+3] = t1;
                    }
                    for( ; j < dims; j++ )
                        center[j] += sample[j];
                    counters[k]++;
                }
                if( iter > 0 )
                    max_center_shift = 0;
                for( k = 0; k < K; k++ )
                {
                    float* center = centers.ptr<float>(k);
                    if( counters[k] != 0 )
                    {
                        float scale = 1.f/counters[k];
                        for( j = 0; j < dims; j++ )
                            center[j] *= scale;
                    }
                    else
                        generateRandomCenter(_box, center, rng);
                   
                    if( iter > 0 )
                    {
                        double dist = 0;
                        const float* old_center = old_centers.ptr<float>(k);
                        for( j = 0; j < dims; j++ )
                        {
                            double t = center[j] - old_center[j];
                            dist += t*t;
                        }
                        max_center_shift = std::max(max_center_shift, dist);
                    }
                }
            }
            // assign labels
            compactness = 0;
            for( i = 0; i < N; i++ )
            {
                sample = data.ptr<float>(i);
                int k_best = 0;
                double min_dist = DBL_MAX;
                for( k = 0; k < K; k++ )
                {
                    const float* center = centers.ptr<float>(k);
                    double dist = distance(sample, center, dims, simd);
                    if( min_dist > dist )
                    {
                        min_dist = dist;
                        k_best = k;
                    }
                }
                compactness += min_dist;
                labels[i] = k_best;
            }
        }
        if( compactness < best_compactness )
        {
            best_compactness = compactness;
            if( _centers )
                centers.copyTo(*_centers);
            _labels.copyTo(best_labels);
        }
    }
    return best_compactness;
}
}

调用方法:
    const int kMeansItCount = 10;  //迭代次数  
    const int kMeansType = cv::KMEANS_PP_CENTERS; //Use kmeans++ center initialization by Arthur and Vassilvitskii  
  
    cv::Mat bgdLabels, fgdLabels; //记录背景和前景的像素样本集中每个像素对应GMM的哪个高斯模型,论文中的kn     
    //kmeans中参数_bgdSamples为:每行一个样本  
    //kmeans的输出为bgdLabels,里面保存的是输入样本集中每一个样本对应的类标签(样本聚为componentsCount类后)  
    kmeans( _fgdSamples, GMM::componentsCount, fgdLabels,  
            cv::TermCriteria( CV_TERMCRIT_ITER, kMeansItCount, 0.0), 0, kMeansType );  

************作者:hjimce     联系qq:1393852684 更多资源请关注我的博客:http://blog.csdn.net/hjimce                  原创文章,版权所有,转载请保留这两行信息****************




你可能感兴趣的:(机器学习)