- GEE下载REMA strip和mosaic数据的python脚本
WiIsonEdwards
pythonwindowslinux
EarthEngineDataCatalog:https://developers.google.com/earth-engine/datasets/catalog搜索REMA:importeeimportgeemapimportosimportwarnings#忽略所有警告warnings.filterwarnings("ignore")#下载REMAStrips数据(2m和8m)defdown
- SparkSQL编程-RDD、DataFrame、DataSet
早拾碗吧
Sparksparkhadoop大数据sparksql
三者之间的关系在SparkSQL中Spark为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?首先从版本的产生上来看:RDD(Spark1.0)—>Dataframe(Spark1.3)—>Dataset(Spark1.6)如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。在后期的Spark版本中
- yolov8的第一次实验报告
算法宇宙
YOLO人工智能计算机视觉
1.实验概述实验名称:占道经营目标检测模型实验目标:提高模型的精确率(Precision)和召回率(Recall),使其接近1。实验日期:[2025-01-16]2.数据集数据集名称:[datasets]数据集大小:[2.68Gb]数据集描述:[数据集主要分两个类别:zdjy_ld,zdjy_gd]注释:占道经营流动,占道经营固定3.模型配置3.1基础配置·模型类型:YOLOv8·预训练模型:YO
- 学习pear的Image_Graph包的一些笔记
stone5
graphimageplotdataset图形extension
image_graph中的对象类型及结构Posted三月31st,2007bystone5image_graph中的对象类型及结构graph----------总图形plotarea-------绘图区plot-------------图块dataset--------数据集point------------点一个图形中多个图形区的分块Posted三月31st,2007bystone5pear来研
- pytorch的使用:卷积神经网络模块
樱花的浪漫
pytorchcnnpytorch深度学习计算机视觉
1.读取数据分别构建训练集和测试集(验证集)DataLoader来迭代取数据使用transforms将数据转换为tensor格式#定义超参数input_size=28#图像的总尺寸28*28num_classes=10#标签的种类数num_epochs=3#训练的总循环周期batch_size=64#一个撮(批次)的大小,64张图片#训练集train_dataset=datasets.MNIST(
- pytorch中的DataLoader
朋也透william
pytorch人工智能python
在PyTorch中,DataLoader是一个工具类,用于高效地加载数据并准备数据输入到模型中。它支持数据的批量加载、随机打乱、并行加载和迭代操作,是训练深度学习模型的关键组件之一。1.基本功能DataLoader的主要职责是从数据集中提取样本,并根据设置返回一个批次的数据。它与Dataset类结合使用:Dataset:定义数据集的来源、结构以及如何获取单个数据样本。DataLoader:负责从D
- Pytorch Dataloader入门
gy-7
pytorch深度学习机器学习
PytorchDataloadercode:torch/utils/data/dataloader.py#L71PytorchDatasettutorial:tutorials/beginner/basics/data_tutorial.html理论:在训练模型时,我们通常希望:以“mini-batch”方式传递样本,能够加速训练。每个epoch都shuffle数据,能够减少模型过拟合。使用Pyt
- 【人工智能】【Python】在Scikit-Learn中使用决策树算法(ID3和CART)
SmallBambooCode
机器学习人工智能python算法scikit-learn决策树机器学习ai
importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.treeimportDecisionTreeClassifier,plot_tree#加载数据集iris=load_iri
- Spark sql 中row的用法
闯闯桑
sparksql大数据开发语言
在ApacheSpark中,Row是一个表示一行数据的类。它是SparkSQL中DataFrame或Dataset的基本数据单元。每一行数据都由一个Row对象表示,而Row对象中的每个字段对应数据的一个列。Row的用法Row对象通常用于以下场景:创建数据:当你手动创建数据时,可以使用Row对象来表示每一行数据。访问数据:当你从DataFrame或Dataset中提取数据时,每一行数据都是一个Row
- 读取RAMS输出文件(RAMS-ISAN文件)的基本程序
Hardess-god
RAMS人工智能
importnumpyasnpfromnetCDF4importDatasetimportxarrayasxrdefread_rams_data(filename):"""读取RAMS输出文件的基本函数"""try:#使用xarray打开文件ds=xr.open_dataset(filename)#提取基本变量temp=ds['THETA'].values#位温pressure=ds['PI'].
- COMP9321 25T1
后端
COMP932125T1Assignment1(15marks)IntroductionTheNSWFuelCheckdatasetismaintainedbytheNSWGovernment.ItallowsmotoriststoaccesshistoricalandliveinformationaboutfuelpricesacrossNSW.Wehavedownloadedthe“FuelC
- GGR 376 Spatial Autocorrelation
后端
Assignment2:SpatialAutocorrelationandRegressionDueDate:February28th,2025GGR376DatasetSummaries:DatasetFormatDescriptionTransitShapefiles.shpDifferentkindsoftransitdata–raillines,railstops,busstops.You
- COMP 315: Cloud Computing
后端
Assignment1:JavascriptCOMP315:CloudComputingforE-CommerceFebruary20251IntroductionAcommontaskwhenbackendprogrammingisdatacleaning,whichistheprocessoftakinganinitialdatasetthatmaycontainerroneousorinco
- COMP 315: Cloud Computing
后端
Assignment1:JavascriptCOMP315:CloudComputingforE-CommerceFebruary20251IntroductionAcommontaskwhenbackendprogrammingisdatacleaning,whichistheprocessoftakinganinitialdatasetthatmaycontainerroneousorinco
- 大模型工程师学习日记(十五):Hugging Face 模型微调训练(基于 BERT 的中文评价情感分析)
MMMMMMMay Love Code
学习bert人工智能深度学习自然语言处理全量微调
1.datasets库核心方法1.1.列出数据集使用datasets库,你可以轻松列出所有HuggingFace平台上的数据集:fromdatasetsimportlist_datasets#列出所有数据集all_datasets=list_datasets()print(all_datasets)1.2.加载数据集你可以通过load_dataset方法加载任何数据集:fromdatasetsim
- **ResNet-SE + MFCC** 训练框架,包括 **数据加载、训练流程**,以及 **混淆矩阵** 可视化示例
大霸王龙
系统分析业务矩阵python线性代数人工智能机器学习深度学习
1.依赖库安装如果你还没安装相关库,请先执行:pipinstalltorchtorchaudiotorchvisionscikit-learnmatplotlibtqdm2.数据加载这里假设你有一个音频分类数据集,其文件结构如下:dataset/│──train/│├──class_0/││├──audio_0.wav││├──audio_1.wav│├──class_1/││├──audio_0
- max_samples,batch_size,gradient_accumulation_steps这三个分别的联系和区别
背太阳的牧羊人
模型微调batch机器学习人工智能
这三个参数都是控制训练数据如何被处理的,它们的作用和区别如下:1.max_samples(最大样本数)定义:限制每个数据集最多使用多少条数据。作用:控制总共参与训练的数据量,减少max_samples可以加快训练速度。你的代码示例:max_samples=300#每个数据集最多用300条样本解释:假设你的dataset里包含:identity数据集有10,000条数据alpaca_en_demo数
- LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于源词表的扩展、(init_model.py文件)实现过计算均值扩展模型、(prepare_pretr
一个处女座的程序猿
CaseCodeNLP/LLMs精选(人工智能)-中级ColossalLLaMA-2自然语言处理
LLM之Colossal-LLaMA-2:源码解读(init_tokenizer.py文件)实现基于jsonl文件中读取新词列表(新中文词汇)→for循环去重实现词表的扩展(中文标记的新词汇)→保存新的分词模型、(init_model.py文件)实现过计算均值来扩展模型的嵌入层以适应新的词汇表,然后保存扩展后的模型、(prepare_pretrain_dataset.py文件)将原始数据集进行处理
- 【Transformer-Hugging Face手册 07/10】 微调预训练模型
无水先生
人工智能高级阶段人工智能综合transformer深度学习人工智能
微调预训练模型-目录一、说明二、在本机PyTorch中微调预训练模型。2.1加载数据2.2训练2.2.1使用PyTorchTrainer进行训练2.3训练超参数2.4评价2.5训练类三、使用Keras训练TensorFlow模型3.1为Keras加载数据3.2将数据加载为tf.data.Dataset3.3数据加载器3.4优化器和学习率调度器3.5训练循环3.6评价四、结论一、说明 使用预训练模
- 基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[5]-高阶实战微调
汀、人工智能
LLM工业级落地实践LLM技术汇总langchain人工智能大模型推理大模型微调p-tuningfastchatRAG
基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[5]-高阶实战微调1.推荐的模型组合在默认的配置文件中,我们提供了以下模型组合LLM:Chatglm2-6bEmbeddingModels:m3e-baseTextSplitter:ChineseRecursiveTextSplitterKb_dataset:faiss我们推荐开发者根据自己的业务需求进行模型微调,如果不需
- AI推介-大语言模型LLMs论文速览(arXiv方向):2024.06.25-2024.07.01
小小帅AIGC
LLMs论文时报人工智能语言模型深度学习自然语言处理大语言模型LLM
文章目录~1.AutoCherry-Picker:LearningfromHigh-qualityGenerativeDataDrivenbyLanguage2.BioMNER:ADatasetforBiomedicalMethodEntityRecognition3.BESTOW:EfficientandStreamableSpeechLanguageModelwiththeBestofTwoW
- ADO.NET 面试题
哈希疯
.net数据库microsoft
这里写自定义目录标题什么是ADO.NET?ADO.NET的主要特点有哪些?ADO.NET的四个组件分别是什么?什么是Connection串?Connection的状态有哪些?什么是DataAdapter?DataAdapter的作用是什么?什么是DataSet?ADO.NET中如何使用事务?什么是存储过程?存储过程的优劣何在?优点缺点什么是参数化查询?什么是事务?事务的并发控制有哪些?什么是连接池
- 基于python的手写数字识别knn_用sklearn中的KNN实现Kaggle手写数字识别
普和司
importcsvfromsklearnimportneighbors#导入训练数据和测试数据defloadData(filename1,filename2,trainDataSet,trainTargetSet,testDataSet):withopen(filename1,'r')ascsvfile1:lines1=csv.reader(csvfile1)dataSet=list(lines1
- 【预测】-双注意LSTM自动编码器记录
jarreyer
lstm人工智能rnn
预测-双注意LSTM自动编码器1预测-双注意LSTM自动编码器1.1复现环境配置1.2数据流记录1.2.1**构建Dataset**(1)**`X`的取数**(2)**`y`的取数**(3)**`target`的取数**1.2.2**举例说明**(1)**`X`的取数**(2)**`y`的取数**(3)**`target`的取数**1.2.3**`y`取数的问题****修正后的代码**1.2.4*
- 基于hf的trl框架的deepseek-r1-zero实现与训练
喂喂喂喂位
deepseekpythonAIGC
导入模块和promt格式"""Reference:"""importreimporttorchfromdatasetsimportload_dataset,DatasetfromtransformersimportAutoTokenizer,AutoModelForCausalLMfromtrlimportGRPOConfig,GRPOTrainer#LoadandprepdatasetSYSTE
- 深度学习复习笔记(6)线性回归——新冠预测项目
Kriol
深度学习初学深度学习笔记线性回归
importmatplotlib.pyplotaspltimporttorch#框架importnumpyasnp#矩阵处理importcsv#读excel文件fromtorch.utils.dataimportDataLoader,Dataset#两个与数据处理相关的包,类Datasetimporttorch.nnasnn#类nn.Module需要用,损失函数需要用fromtorchimport
- 第N3周:NLP中的数据集构建
OreoCC
自然语言处理深度学习pytorch
本人往期文章可查阅:深度学习总结对于初学者,NLP中最烦人的问题之一就是数据集的构建问题,处理不好就会引起shape问题(各种由于shape错乱导致的问题)。这里我给出一个模板,大家可根据这个模板来构建。torch.utils.data是PyTorch中用于数据加载和预处理的模块。其中包括Dataset和DataLoader两个类,它们通常结合使用来加载和处理数据。1.Datasettorch.u
- Bert的使用
巨鹿..
深度学习记录bert人工智能深度学习
一、Data.py#data负责产生两个dataloaderfromtorch.utils.dataimportDataLoader,Datasetfromsklearn.model_selectionimporttrain_test_split#给X,Y和分割比例,分割出来一个训练集和验证机的X,Yimporttorchdefread_file(path):data=[]label=[]with
- selectdataset 发布2024最热门Top100数据集
数据集
遇见数据集索引了国内外的大部分网站。首页有最新的数据集推荐:GitHub、HuggingFace、arXiv这些热门站点,都属于日级别的更新。这个站点是从搜索引擎方面去监控最新的数据集,大家如果有关注某个一个特点领域或话题的更新,可以关注这个站点:遇见数据集-让每个数据集都被发现,让每一次遇见都有价值。遇见数据集,领先的千万级数据集搜索引擎,实时追踪全球数据集,助力把握数据要素市场。https:/
- 深度学习PyTorch之数据加载DataLoader
@Mr_LiuYang
计算机视觉基础深度学习pytorch人工智能
深度学习pytorch之简单方法自定义9类卷积即插即用文章目录数据加载基础架构1、Dataset类详解2、DataLoader核心参数解析3、数据增强数据加载基础架构核心类关系图torch.utils.data├──Dataset(抽象基类)├──DataLoader(数据加载器)├──Sampler(采样策略)├──BatchSampler(批量采样)└──IterableDataset(流式数
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR