- 微信小程序----图片点击放大展示(以及下载本地功能)
鸭鸭梨吖
微信小程序小程序
wxml:{{item.originalName}}下载js文件(点击放大):tapPreviewImage(e){leturl=e.currentTarget.dataset.urlwx.previewImage({urls:[url],current:url})},tapOpenFile(e){leturl=e.currentTarget.dataset.urlwx.downloadFile(
- python绘图之二维核密度图
pianmian1
python开发语言
二维核密度图能够直观地呈现两个变量之间的联合分布情况。通过平滑的密度曲线,可以观察数据的集中趋势、离散程度以及是否存在多峰等特征。本节学习使用python绘制二维核密度图importseabornassnsimportmatplotlib.pyplotasplt#加载seaborn自带的保险数据集insurance=sns.load_dataset('tips')#注意:seaborn中没有直接的
- c#中的DataSet原理和用法
家里有蜘蛛
#c#学习笔记
c#中的DataSet1.DataSet是什么DateSet在c#程序中建立一个临时数据库下图所示:2…命名空间usingSystem.Data;3.DataSet的建立和用法下面是常用的方法//创建一个临时数据库DataSetds=newDataSet();//创建一个临时表DataTabledt=newDataTable();//添加自增主键DataColumndcId=newDataColu
- 利用python实现小提琴图的代码
python游乐园
可视化python开发语言
importseabornassnsimportmatplotlib.pyplotasplt#加载seaborn内置的鸢尾花数据集iris=sns.load_dataset("iris")#设置绘图风格,可选,这里使用默认风格#sns.set_style("whitegrid")#绘制小提琴图,以'species'为分类依据,绘制'sepal_length'特征的小提琴图#可以根据实际需求更改x和
- 上位机和MYSQL连接_C#上位机与数据库连接初步学习经验分享一!
weixin_39961369
上位机和MYSQL连接
太一、定义连接字符串,用来链接SQLServerstringstr_con="server=.(服务器名称一般为.);database=WordBook(数据库名称);uid=sa(服务器登录名);pwd=123(服务器密码)";二、有了链接字符串之后,开始数据库操作1、数据库查询定义了一个查询方法,用来调用:publicDataSetqueryDatabase(stringsql)//sql是查
- AI人工智能常见的专业术语
奇华智能
人工智能大模型ChatGPTLLMAI
模型(model):计算机层面的认知学习算法(learningalgorithm),从数据中产生模型的方法数据集(dataset):一组记录的集合示例(instance):对于某个对象的描述样本(sample):也叫示例属性(attribute):对象的某方面表现或特征特征(feature):同属性属性值(attributevalue):属性上的取值属性空间(attributespace):属性张
- Qt 模型视图
小卒曹阿瞒
C++/QT
Widget::Widget(QWidget*parent):QWidget(parent){QStringListdata;datasetStringList(data);listView=newQListView(this);listView->setModel(model);QHBoxLayout*btnLayout=newQHBoxLayout;QPushButton*insertBtn=
- 《机器学习实战》专栏 No12:项目实战—端到端的机器学习项目Kaggle糖尿病预测
带娃的IT创业者
机器学习实战机器学习人工智能分类算法python
《机器学习实战》专栏第12集:项目实战——端到端的机器学习项目Kaggle糖尿病预测本集为专栏最后一集,本专栏的特点是短平快,聚焦重点,不长篇大论纠缠于理论,而是在介绍基础理论框架基础上,快速切入实战项目和代码,所有代码都经过实践检验,是读者入门和熟悉上手的上佳知识材料在本集中,我们将通过Kaggle平台的经典糖尿病预测(PimaIndiansDiabetesDataset)数据集,系统回顾完整的
- 报错:Module ‘XXX‘ doesn‘t exist on the Hugging Face Hub
_沧海桑田_
TensorFlowPyTorchtensorflowpytorch
代码fromdatasetsimportload_metricmetric=load_metric("accuracy")或者metric=evaluate.load("accuracy")报错:Module'accuracy'doesn'texistontheHuggingFaceHub解决方案:在https://github.com/huggingface/datasets/blob/main
- 鸢尾花分类项目 GUI
编织幻境的妖
分类数据挖掘人工智能
1.机器学习的定义机器学习是一门人工智能的分支,专注于开发算法和统计模型,使计算机能够在没有明确编程的情况下从数据中自动学习和改进。通过识别数据中的模式和规律,机器学习系统可以做出预测或决策。常见的应用包括图像识别、语音识别、推荐系统等。2.为什么使用鸢尾花数据集(Irisdataset)鸢尾花数据集是一个经典的多类分类问题数据集,由英国统计学家和遗传学家RonaldFisher在1936年引入。
- 详解多模态(红外-可见光图像)目标检测模型SuperYOLO源码,真正搞清代码逻辑!
弗兰随风小欢
目标检测实验系列深度学习目标检测YOLO计算机视觉多模态目标检测视觉检测人工智能
目录1.文章主要内容2.相关说明3.基于SuperYOLO的多模态目标检测3.1详解代码流程(重点)3.1.1train.py文件(入口)3.1.2SRyolo.py文件3.1.3datasets.py文件3.1.4再次回到train.py文件3.1.5再次回到SRyolo.py文件3.总结1.文章主要内容本文主要是详细分析SuperYOLO多模态源代码,包括如何启动,以及详细代码部分如何改进,从
- Spark中Dataset方法详解
小巫程序Demo日记
Spark+Hadoop学习sparkajaxjava分布式
一、数据清洗核心方法1.处理缺失值方法说明示例代码na().drop()删除包含空值的行Datasetcleaned=dataset.na().drop();na().fill(value)用指定值填充所有空值Datasetfilled=dataset.na().fill(0);na().fill(Map)按列填充不同值Mapfills=newHashMapunique=dataset.dropD
- AI 百炼成神:线性回归,预测房价
github_czy
AI百炼成神:100个项目玩转人工智能python开发语言
我们开始第一个项目——线性回归:预测房价。这是一个经典的机器学习入门项目,可以帮助你理解如何使用线性回归模型来预测连续的数值。第一个项目:线性回归预测房价项目目标学习线性回归的基本概念。使用历史房价数据建立一个预测模型。理解如何评估模型的性能。项目步骤准备数据集为了演示线性回归,我们将使用一个常见的房价数据集:波士顿房价数据集(BostonHousingDataset)。这个数据集包含了多个特征(
- Simulink 配置参数中指定的设置创建 out.mat 文件时遇到了问题
云缘若仙
matlab
报错:Unabletocreatefile'out.mat'specifiedin'ConfigurationParameters'>'DataImport/Export'>'LogDatasetdatatofile'.Possiblecausesforthisinclude:thespecifieddirectorydoesnotexist,thedirectoryorthefilearenot
- 宇树G1嵌入式软件架构及技术实现
爱吃青菜的大力水手
架构fpga开发机器人算法
Opensourcedatacollection:https://github.com/unitreerobotics/avp_teleoperateOpensourcelearningalgorithms:https://github.com/unitreerobotics/unitree_IL_lerobotOpensourcedatasetsandmodels:https://hugging
- 用连接数据库的方式读取excel
Vanqqqq
SQLC#excel
之前喜欢用hssfworkbook直接将excel读取到workbook中,这样直接对sheet进行解析。可是当数据量很大,数据文件到5M以后c#的内存占用很大,就会很卡了。所以改用这种方法读取到dataset中,再对数据进行解析。直接上代码:publicstaticDataSetGetExcelTableByOleDB(stringstrExcelPath){try{DataTabledtExc
- 根据deepseek模型微调训练自动驾驶模型及数据集的思路
ywfwyht
自动驾驶深度学习人工智能自动驾驶人工智能机器学习
以下是使用DeepSeek模型微调训练自动驾驶模型的详细步骤和代码示例。本流程假设你已有自动驾驶领域的数据集(如驾驶指令、传感器数据等),并基于PyTorch框架实现。Step1:环境准备#安装依赖库pipinstalltorchtransformersdatasetsnumpypandasStep2:数据准备假设数据集格式为JSON,包含输入文本(传感器/场景描述)和输出控制指令://data/
- Spark 和 Flink
信徒_
sparkflink大数据
Spark和Flink都是目前流行的大数据处理引擎,但它们在架构设计、应用场景、性能和生态方面有较大区别。以下是详细对比:1.架构与核心概念方面ApacheSparkApacheFlink计算模型微批(Micro-Batch)为主,但支持结构化流(StructuredStreaming)原生流(TrueStreaming),基于事件驱动处理方式以RDD、DataFrame/Dataset作为核心抽
- python运行路径和脚本文件所在路径
Wiseehw
Python
我在sublimeText2编辑python脚本程序,用ipython导入脚本模块,打开文件时总是报错,原来是路径问题deffile2matrix(filename):fp=open(filename,'r')datalines=fp.readlines()lenlines=len(datalines)dataSet=np.zeros((lenlines,3))labels=[]index=0fo
- yolo使用的一些脚本
一休哥※
YOLO深度学习python
合并yolo标注label输入两个路径的labels,可以特定的32类别的标注合并到target_dir目录中的txt中#-*-coding:utf-8-*-#@Time:2024/6/1917:57#@Author:sjh#@Site:#@File:python_txt.py#@Comment:importos#定义源目录和目标目录source_dir=r"E:\Download\Dataset
- 【OpenCV】双目相机计算深度图和点云
AI大权
计算机视觉opencv双目相机点云python
双目相机计算深度图的基本原理是通过两台相机从不同角度拍摄同一场景,然后利用视差来计算物体的距离。本文的Python实现示例,使用OpenCV库来处理图像和计算深度图。1、数据集介绍Mobilestereodatasets由PanGuanghan、SunTiansheng、TobyWeed和DanielScharstein在2019-2021年期间创建的,使用了RogerDai、KyleMeredi
- Pytorch学习之路(3)
AAAx1anyu
Pytorch学习之旅学习人工智能pytorch深度学习笔记
一.机器学习任务的整体流程1.数据预处理:数据格式统一、异常数据消除、必要数据转换,划分训练集、验证集、测试集2.选择模型3.设定损失函数、优化方法、对应的超参数4.用模型拟合训练集数据,在验证集/测试集上计算模型表现二.数据读入pytorch数据读入通过Dataset+DataLoader的方式完成,Dataset定义好数据的格式和数据变换形式,DataLoader用iterative的方式不断
- 25、深度学习-自学之路-卷积神经网络基于MNIST数据集的程序展示
小宇爱
深度学习-自学之路深度学习cnn人工智能
importkeras#添加Keraskuimportsys,numpyasnpfromkeras.utilsimportnp_utilsimportosfromkeras.datasetsimportmnistprint("licheng:"+"20"+'\n')np.random.seed(1)(x_train,y_train),(x_test,y_test)=mnist.load_data(
- GDAL库简介及函数说明
海绵波波107
Python#Python的遥感应用python
目录简介常用函数说明打开和读取影像gdal.Open()dataset.RasterXSizedataset.GetGeoTransform()dataset.GetProjection()dataset.GetRasterBand()dataset.ReadAsArray()写入和输出影像gdal.GetDriverByName()driver.Create()out_dataset.SetGe
- COCO数据集
是小果果蛋儿啊
机器学习算法计算机视觉人工智能深度学习
官网地址:http://cocodataset.org/#downloadCOCO是一个大规模的物体检测、分割和描述数据集。COCO具有以下特点:物体分割上下文识别超像素材质分割33万张图片(超过20万张有标注)150万个物体实例80个物体类别91个材质类别每张图片有5个描述25万人的关键点COCO数据集是一个多用途的计算机视觉数据集,它支持多种任务,包括但不限于:物体检测(ObjectDetec
- 【语义分割专题文章】
BoostingIsm
Segmentationpython
本栏聚焦在语义分割的相关算法,专栏内文章的代码均已实现。一、数据篇【遥感】【道路】篇:【语义分割】【专题系列】一、MassachusettsRoadsDataset马萨诸塞州道路数据集获取二、CNN篇Unet(2015):【语义分割】【专题系列】二、Unet语义分割代码实战PSPNet(2017):【语义分割】【专题系列】三、PSPNet语义分割代码实战Linknet(2017)FPN(Featu
- Calculate Correlation Matrix
六月五日
Deep-ML
CalculateCorrelationMatrixWriteaPythonfunctiontocalculatethecorrelationmatrixforagivendataset.Thefunctionshouldtakeina2DnumpyarrayXandanoptional2DnumpyarrayY.IfYisnotprovided,thefunctionshouldcalculat
- 【目标检测】YOLO格式数据集txt标注转换为COCO格式JSON
ericdiii
目标检测目标检测YOLOjson
YOLO格式数据集:images|--train|--test|--vallabels|--train|--test|--val代码:importosimportjsonfromPILimportImage#设置数据集路径dataset_path="path/to/your/dataset"images_path=os.path.join(dataset_path,"images")labels_
- mnist数据集下载及使用
小句
pytorch机器学习
#mnist数据集在百度云盘里#链接:https://pan.baidu.com/s/1ca2rL2-0_JLtnH1YQ3otvA#提取码:uq3d#pytorch自带数据集的使用importtorchvisionfromtorchvision.datasetsimportMNISTmnist=MNIST(root="./data",train=True,download=False)print
- AI应用完整加载数据集配置神经网络配置训练信息训练模型与保存模型到本地------AI
旧约Alatus
AI软件架构设计人工智能stablediffusionchatgptAIGCDALL·E2AI-nativebard
packagecom.alatus.djl.web;importai.djl.Application;importai.djl.MalformedModelException;importai.djl.Model;importai.djl.basicdataset.cv.classification.ImageFolder;importai.djl.basicdataset.cv.classifi
- 项目中 枚举与注解的结合使用
飞翔的马甲
javaenumannotation
前言:版本兼容,一直是迭代开发头疼的事,最近新版本加上了支持新题型,如果新创建一份问卷包含了新题型,那旧版本客户端就不支持,如果新创建的问卷不包含新题型,那么新旧客户端都支持。这里面我们通过给问卷类型枚举增加自定义注解的方式完成。顺便巩固下枚举与注解。
一、枚举
1.在创建枚举类的时候,该类已继承java.lang.Enum类,所以自定义枚举类无法继承别的类,但可以实现接口。
- 【Scala十七】Scala核心十一:下划线_的用法
bit1129
scala
下划线_在Scala中广泛应用,_的基本含义是作为占位符使用。_在使用时是出问题非常多的地方,本文将不断完善_的使用场景以及所表达的含义
1. 在高阶函数中使用
scala> val list = List(-3,8,7,9)
list: List[Int] = List(-3, 8, 7, 9)
scala> list.filter(_ > 7)
r
- web缓存基础:术语、http报头和缓存策略
dalan_123
Web
对于很多人来说,去访问某一个站点,若是该站点能够提供智能化的内容缓存来提高用户体验,那么最终该站点的访问者将络绎不绝。缓存或者对之前的请求临时存储,是http协议实现中最核心的内容分发策略之一。分发路径中的组件均可以缓存内容来加速后续的请求,这是受控于对该内容所声明的缓存策略。接下来将讨web内容缓存策略的基本概念,具体包括如如何选择缓存策略以保证互联网范围内的缓存能够正确处理的您的内容,并谈论下
- crontab 问题
周凡杨
linuxcrontabunix
一: 0481-079 Reached a symbol that is not expected.
背景:
*/5 * * * * /usr/IBMIHS/rsync.sh
- 让tomcat支持2级域名共享session
g21121
session
tomcat默认情况下是不支持2级域名共享session的,所有有些情况下登陆后从主域名跳转到子域名会发生链接session不相同的情况,但是只需修改几处配置就可以了。
打开tomcat下conf下context.xml文件
找到Context标签,修改为如下内容
如果你的域名是www.test.com
<Context sessionCookiePath="/path&q
- web报表工具FineReport常用函数的用法总结(数学和三角函数)
老A不折腾
Webfinereport总结
ABS
ABS(number):返回指定数字的绝对值。绝对值是指没有正负符号的数值。
Number:需要求出绝对值的任意实数。
示例:
ABS(-1.5)等于1.5。
ABS(0)等于0。
ABS(2.5)等于2.5。
ACOS
ACOS(number):返回指定数值的反余弦值。反余弦值为一个角度,返回角度以弧度形式表示。
Number:需要返回角
- linux 启动java进程 sh文件
墙头上一根草
linuxshelljar
#!/bin/bash
#初始化服务器的进程PId变量
user_pid=0;
robot_pid=0;
loadlort_pid=0;
gateway_pid=0;
#########
#检查相关服务器是否启动成功
#说明:
#使用JDK自带的JPS命令及grep命令组合,准确查找pid
#jps 加 l 参数,表示显示java的完整包路径
#使用awk,分割出pid
- 我的spring学习笔记5-如何使用ApplicationContext替换BeanFactory
aijuans
Spring 3 系列
如何使用ApplicationContext替换BeanFactory?
package onlyfun.caterpillar.device;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import
- Linux 内存使用方法详细解析
annan211
linux内存Linux内存解析
来源 http://blog.jobbole.com/45748/
我是一名程序员,那么我在这里以一个程序员的角度来讲解Linux内存的使用。
一提到内存管理,我们头脑中闪出的两个概念,就是虚拟内存,与物理内存。这两个概念主要来自于linux内核的支持。
Linux在内存管理上份为两级,一级是线性区,类似于00c73000-00c88000,对应于虚拟内存,它实际上不占用
- 数据库的单表查询常用命令及使用方法(-)
百合不是茶
oracle函数单表查询
创建数据库;
--建表
create table bloguser(username varchar2(20),userage number(10),usersex char(2));
创建bloguser表,里面有三个字段
&nbs
- 多线程基础知识
bijian1013
java多线程threadjava多线程
一.进程和线程
进程就是一个在内存中独立运行的程序,有自己的地址空间。如正在运行的写字板程序就是一个进程。
“多任务”:指操作系统能同时运行多个进程(程序)。如WINDOWS系统可以同时运行写字板程序、画图程序、WORD、Eclipse等。
线程:是进程内部单一的一个顺序控制流。
线程和进程
a. 每个进程都有独立的
- fastjson简单使用实例
bijian1013
fastjson
一.简介
阿里巴巴fastjson是一个Java语言编写的高性能功能完善的JSON库。它采用一种“假定有序快速匹配”的算法,把JSON Parse的性能提升到极致,是目前Java语言中最快的JSON库;包括“序列化”和“反序列化”两部分,它具备如下特征:  
- 【RPC框架Burlap】Spring集成Burlap
bit1129
spring
Burlap和Hessian同属于codehaus的RPC调用框架,但是Burlap已经几年不更新,所以Spring在4.0里已经将Burlap的支持置为Deprecated,所以在选择RPC框架时,不应该考虑Burlap了。
这篇文章还是记录下Burlap的用法吧,主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
 
- 【Mahout一】基于Mahout 命令参数含义
bit1129
Mahout
1. mahout seqdirectory
$ mahout seqdirectory
--input (-i) input Path to job input directory(原始文本文件).
--output (-o) output The directory pathna
- linux使用flock文件锁解决脚本重复执行问题
ronin47
linux lock 重复执行
linux的crontab命令,可以定时执行操作,最小周期是每分钟执行一次。关于crontab实现每秒执行可参考我之前的文章《linux crontab 实现每秒执行》现在有个问题,如果设定了任务每分钟执行一次,但有可能一分钟内任务并没有执行完成,这时系统会再执行任务。导致两个相同的任务在执行。
例如:
<?
//
test
.php
- java-74-数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
bylijinnan
java
public class OcuppyMoreThanHalf {
/**
* Q74 数组中有一个数字出现的次数超过了数组长度的一半,找出这个数字
* two solutions:
* 1.O(n)
* see <beauty of coding>--每次删除两个不同的数字,不改变数组的特性
* 2.O(nlogn)
* 排序。中间
- linux 系统相关命令
candiio
linux
系统参数
cat /proc/cpuinfo cpu相关参数
cat /proc/meminfo 内存相关参数
cat /proc/loadavg 负载情况
性能参数
1)top
M:按内存使用排序
P:按CPU占用排序
1:显示各CPU的使用情况
k:kill进程
o:更多排序规则
回车:刷新数据
2)ulimit
ulimit -a:显示本用户的系统限制参
- [经营与资产]保持独立性和稳定性对于软件开发的重要意义
comsci
软件开发
一个软件的架构从诞生到成熟,中间要经过很多次的修正和改造
如果在这个过程中,外界的其它行业的资本不断的介入这种软件架构的升级过程中
那么软件开发者原有的设计思想和开发路线
- 在CentOS5.5上编译OpenJDK6
Cwind
linuxOpenJDK
几番周折终于在自己的CentOS5.5上编译成功了OpenJDK6,将编译过程和遇到的问题作一简要记录,备查。
0. OpenJDK介绍
OpenJDK是Sun(现Oracle)公司发布的基于GPL许可的Java平台的实现。其优点:
1、它的核心代码与同时期Sun(-> Oracle)的产品版基本上是一样的,血统纯正,不用担心性能问题,也基本上没什么兼容性问题;(代码上最主要的差异是
- java乱码问题
dashuaifu
java乱码问题js中文乱码
swfupload上传文件参数值为中文传递到后台接收中文乱码 在js中用setPostParams({"tag" : encodeURI( document.getElementByIdx_x("filetag").value,"utf-8")});
然后在servlet中String t
- cygwin很多命令显示command not found的解决办法
dcj3sjt126com
cygwin
cygwin很多命令显示command not found的解决办法
修改cygwin.BAT文件如下
@echo off
D:
set CYGWIN=tty notitle glob
set PATH=%PATH%;d:\cygwin\bin;d:\cygwin\sbin;d:\cygwin\usr\bin;d:\cygwin\usr\sbin;d:\cygwin\us
- [介绍]从 Yii 1.1 升级
dcj3sjt126com
PHPyii2
2.0 版框架是完全重写的,在 1.1 和 2.0 两个版本之间存在相当多差异。因此从 1.1 版升级并不像小版本间的跨越那么简单,通过本指南你将会了解两个版本间主要的不同之处。
如果你之前没有用过 Yii 1.1,可以跳过本章,直接从"入门篇"开始读起。
请注意,Yii 2.0 引入了很多本章并没有涉及到的新功能。强烈建议你通读整部权威指南来了解所有新特性。这样有可能会发
- Linux SSH免登录配置总结
eksliang
ssh-keygenLinux SSH免登录认证Linux SSH互信
转载请出自出处:http://eksliang.iteye.com/blog/2187265 一、原理
我们使用ssh-keygen在ServerA上生成私钥跟公钥,将生成的公钥拷贝到远程机器ServerB上后,就可以使用ssh命令无需密码登录到另外一台机器ServerB上。
生成公钥与私钥有两种加密方式,第一种是
- 手势滑动销毁Activity
gundumw100
android
老是效仿ios,做android的真悲催!
有需求:需要手势滑动销毁一个Activity
怎么办尼?自己写?
不用~,网上先问一下百度。
结果:
http://blog.csdn.net/xiaanming/article/details/20934541
首先将你需要的Activity继承SwipeBackActivity,它会在你的布局根目录新增一层SwipeBackLay
- JavaScript变换表格边框颜色
ini
JavaScripthtmlWebhtml5css
效果查看:http://hovertree.com/texiao/js/2.htm代码如下,保存到HTML文件也可以查看效果:
<html>
<head>
<meta charset="utf-8">
<title>表格边框变换颜色代码-何问起</title>
</head>
<body&
- Kafka Rest : Confluent
kane_xie
kafkaRESTconfluent
最近拿到一个kafka rest的需求,但kafka暂时还没有提供rest api(应该是有在开发中,毕竟rest这么火),上网搜了一下,找到一个Confluent Platform,本文简单介绍一下安装。
这里插一句,给大家推荐一个九尾搜索,原名叫谷粉SOSO,不想fanqiang谷歌的可以用这个。以前在外企用谷歌用习惯了,出来之后用度娘搜技术问题,那匹配度简直感人。
环境声明:Ubu
- Calender不是单例
men4661273
单例Calender
在我们使用Calender的时候,使用过Calendar.getInstance()来获取一个日期类的对象,这种方式跟单例的获取方式一样,那么它到底是不是单例呢,如果是单例的话,一个对象修改内容之后,另外一个线程中的数据不久乱套了吗?从试验以及源码中可以得出,Calendar不是单例。
测试:
Calendar c1 =
- 线程内存和主内存之间联系
qifeifei
java thread
1, java多线程共享主内存中变量的时候,一共会经过几个阶段,
lock:将主内存中的变量锁定,为一个线程所独占。
unclock:将lock加的锁定解除,此时其它的线程可以有机会访问此变量。
read:将主内存中的变量值读到工作内存当中。
load:将read读取的值保存到工作内存中的变量副本中。
- schedule和scheduleAtFixedRate
tangqi609567707
javatimerschedule
原文地址:http://blog.csdn.net/weidan1121/article/details/527307
import java.util.Timer;import java.util.TimerTask;import java.util.Date;
/** * @author vincent */public class TimerTest {
 
- erlang 部署
wudixiaotie
erlang
1.如果在启动节点的时候报这个错 :
{"init terminating in do_boot",{'cannot load',elf_format,get_files}}
则需要在reltool.config中加入
{app, hipe, [{incl_cond, exclude}]},
2.当generate时,遇到:
ERROR