- 探索创新科技: Lite-Mono - 简约高效的小型化Mono框架
杭律沛Meris
探索创新科技:Lite-Mono-简约高效的小型化Mono框架Lite-Mono[CVPR2023]Lite-Mono:ALightweightCNNandTransformerArchitectureforSelf-SupervisedMonocularDepthEstimation项目地址:https://gitcode.com/gh_mirrors/li/Lite-Mono如果你在寻找一个轻
- 当NAS遭遇鲁棒性:寻找对抗攻击的坚固架构
甄如冰Lea
当NAS遭遇鲁棒性:寻找对抗攻击的坚固架构RobNets项目地址:https://gitcode.com/gh_mirrors/ro/RobNets在当今深度学习的浪潮中,模型的安全性和鲁棒性日益成为研究的热点。本文将为您揭开一款开源项目——《当NAS遇见鲁棒性:对抗攻击下可搜索的鲁棒架构》的神秘面纱。该项目源自CVPR2020的一篇论文,并提供了详细的实现代码和实验指南,致力于探索在网络架构设计
- 线性代数|机器学习-P33卷积神经网络ImageNet和卷积规则
取个名字真难呐
算法机器学习矩阵人工智能线性代数
文章目录1.ImageNet2.卷积计算2.1两个多项式卷积2.2函数卷积2.3循环卷积3.周期循环矩阵和非周期循环矩阵4.循环卷积特征值4.1卷积计算的分解4.2运算量4.3二维卷积公式5.KroneckerProduct1.ImageNetImageNet的论文paper链接如下:详细请直接阅读相关论文即可通过网盘分享的文件:imagenet_cvpr09.pdf链接:https://pan.
- CVPR 2021 | 即插即用! CA:新注意力机制,助力分类/检测/分割涨点!
Akita·wang
文献解析paperpython机器学习人工智能深度学习计算机视觉
摘要最近关于移动网络设计的研究已经证明了通道注意(例如,挤压和激发注意)对于提升模型性能的显著效果,但是它们通常忽略位置信息,而位置信息对于生成空间选择性注意图是重要的。本文提出了一种新的移动网络注意机制,将位置信息嵌入到信道注意中,我们称之为“协同注意”。与通过2D全局汇集将特征张量转换为单个特征向量的通道注意力不同,坐标注意力将通道注意力分解为两个1D特征编码过程,这两个过程分别沿两个空间方向
- **深度融合未来——DI-Fusion:开启在线三维重建新篇章**
余靖年Veronica
深度融合未来——DI-Fusion:开启在线三维重建新篇章在三维世界探索的前沿,一项名为DI-Fusion的技术正悄然掀起一波科技浪潮。由清华大学的JiahuiHuang、Shi-ShengHuang等人共同研发,这项创新成果已在CVPR2021上大放异彩,它的出现标志着在线隐式三维重构领域的重大突破。项目介绍重塑三维视觉新纪元DI-Fusion,又称为深度融合,是一项基于RGB-D流数据的新型在
- 《Learning to Count without Annotations》CVPR2024
夏日的盒盒
学习计算机视觉人工智能视觉统计目标计数
摘要论文提出了一种名为UnCounTR的模型,该模型能够在没有任何手动标注的情况下学习进行基于参考的对象计数。这是通过构建“Self-Collages”(自我拼贴画)实现的,即在背景图像上粘贴不同对象的图像作为训练样本,提供覆盖任意对象类型和数量的学习信号。UnCounTR基于现有的无监督表示和分割技术,首次成功展示了无需手动监督即可进行参考计数的能力。实验表明,该方法不仅超越了简单的基线和通用模
- 【论文简介】Circle Loss: A Unified Perspective of Pair Similarity Optimization
萝莉狼
machinelearningcirclelossdeepfeaturelearning
CircleLoss:AUnifiedPerspectiveofPairSimilarityOptimization旷世cvpr2020的一篇文章,站在更高的视角,统一了deepfeaturelearning的两大基础loss:基于class-levellabel的loss(如softmax+crossentropy)和基于pair-wiselabel的loss(如tripletloss),指出了
- Object Tracking
ZoneIan
计算机视觉人工智能
目录ECCV2022ECCV2020ICCV2023CVPR2023CVPR2022ECCV20221.(MOT、指标)MOTCOM:TheMulti-ObjectTrackingDatasetComplexityMetric2.(鱼数据集、声呐视频、MOT)TheCaltechFishCountingDataset:ABenchmarkforMultiple-ObjectTrackingandC
- 基于白盒表征的图像卡通化
Mezereon
取自CVPR2020的一篇文章LearningtoCartoonizeUsingWhite-boxCartoonRepresentations图像卡通化,即是将自然拍摄到的图片转化成卡通风格的图片,属于一种风格迁移。图像卡通化的例子如上图所示,左图为真实图片,右图为卡通化的结果。风格迁移很久之前就被人提出来了,比如2016年BAIR实验室提出来的Pix2Pix,以及之后针对非pair数据所提出来的
- 【Motion Forecasting】片段节选:QCNet:双阶段轨迹解码提升运动预测任务的性能
YGGP
MotionForecasting目标跟踪人工智能计算机视觉
Query-CentricTrajectoryPrediction今天要分享的片段来自于《Query-CentricTrajectoryPrediction》,它发布于2023年的CVPR,作者曾在2022年提出了HiVT,同样发表在CVPR。HiVT是运动预测任务中非常经典的一项工作,QCNet基于HiVT进行了较大的改动,提出了Query-Centric的场景编码方法,使得场景当中经过编码器得
- 手势估计- Hand Pose Estimation
我在呀
首先给大家分享一个巨牛巨牛的人工智能教程,是我无意中发现的。教程不仅零基础,通俗易懂,而且非常风趣幽默,还时不时有内涵段子,像看小说一样,哈哈~我正在学习中,觉得太牛了,所以分享给大家!点这里可以跳转到教程1.目前进展1.1相关资料1)HANDSCVPR20162)HANDS2015Dataset3)CVPR20164)Hand3DPoseEstimation(ComputerVisionforA
- 语义补全学习笔记
AI算法网奇
深度学习基础人工智能
自动驾驶VoxFormerVoxFromer仅通过2D图像,不依赖点云数据,能预测完整的3D几何形状和语义信息GitHub-NVlabs/VoxFormer:OfficialPyTorchimplementationofVoxFormer[CVPR2023Highlight]
- 【CVPR‘24】BP-Net:用于深度补全的双边传播网络,新 SOTA!
BIT可达鸭
深度补全:从入门到放弃网络KITTI计算机视觉cvpr深度估计
【CVPR'24】BP-Net:用于深度补全的双边传播网络,新SOTA!摘要介绍方法1.总体架构2.双边传播模块(BilateralPropagationModule)深度参数化参数生成先验编码3.多模态融合(Multi-modalFusion)4.深度细化(DepthRefinement)5.损失函数结果与分析结论论文地址:https://arxiv.org/abs/2403.11270开源代码
- 研究生师兄谈SCI论文写作心得
华大基因学院
即将毕业的高产博士师兄(博士在读期间累计发表SCI论文11篇,其中第一作者或通讯作者论文10篇),受学院委托介绍一下论文写作经验,希望能对大家更快、更轻松发表学术论文提供些许帮助。一、文献阅读在开展课题前,阅读文献是一个不可或缺的环节,只有充分了解你要做的课题,才能得心应手地设计课题,进而快速的围绕计划开展研究、准备数据,方便后期撰写论文。实际上,很多小伙伴常常花费大量时间看各种文献,但还是往往不
- CVPR2024部分研究方向文章梳理(持续更新中)
路漫漫独求索
计算机视觉人工智能深度学习分类AI作画stablediffusion
CVPR2024部分研究方向文章梳理(持续更新中)长尾分布(Long-Tailed)DeiT-LT:DistillationStrikesBackforVisionTransformerTrainingonLong-TailedDatasets.全文地址:DeiT-LT\(rangwani-harsh.github.io\)领域自适应(DomainAdaptation)LearningCNNonV
- 探索舞蹈的未来:Bailando —— 3D舞蹈生成的革命性框架
郁英忆
探索舞蹈的未来:Bailando——3D舞蹈生成的革命性框架Bailando是一个创新的开源项目,源自CVPR2022口头报告论文,它利用Actor-CriticGPT和编舞记忆来实现3D舞蹈序列的自动生成。该项目已更新至[Bailando++],并被TPAMI2023接受,展现了其在3D舞蹈生成领域的前沿地位。1、项目介绍Bailando致力于解决一项挑战性的任务:根据音乐创作出符合舞蹈规则且与
- High-Resolution Image Synthesis with Latent Diffusion Models
仁义礼智信达
深度学习扩散模型CVPR超分辨率重建
一、简介标题:High-ResolutionImageSynthesiswithLatentDiffusionModels(https://arxiv.org/pdf/2112.10752.pdf;GitHub-CompVis/latent-diffusion:High-ResolutionImageSynthesiswithLatentDiffusionModels)期刊:CVPR时间:2022
- Pytorch学习记录-接近人类水平的GEC(使用混合机器翻译模型)
我的昵称违规了
五月第二周要结束了,接下来的三个月主要是文献阅读,准备8、9月的开题报告,技术类的文献集中在GEC和Textmaching的应用方面,读完之后找demo复现,然后应用。理论方面的论文也都是英文的8.NearHuman-LevelPerformanceinGrammaticalErrorCorrectionwithHybridMachineTranslation昨天一天没看论文,发现我文献阅读速度太
- CVPR 2023: Multiscale Tensor Decomposition and Rendering Equation Encoding for View Synthesis
结构化文摘
人工智能
我们使用以下6个分类标准对本文的研究选题进行分析:1.表示类型连续场景表示(NeRF类):将场景隐式定义为一个连续场,允许在任意点查询。离散场景表示:使用显式3D结构,例如体素或点云。混合表示:结合连续和离散表示的优势。2.表示编码单尺度编码:直接将特征编码到网格或MLP上。多尺度编码:分层结构允许在不同细节级别进行表示,有助于提高效率和高频细节恢复。张量分解:将特征组织成结构化张量,而不是简单的
- CVPR 2023: Revisiting Residual Networks for Adversarial Robustness
结构化文摘
人工智能3d
我们使用以下6个分类标准对本文的研究选题进行分析:基于MECE原则,以及您提供的论文摘要,以下是对抗鲁棒性研究的六个分类标准:1.提高鲁棒性的重点:对抗训练方法:针对现有架构开发新的对抗训练算法/策略。架构设计:修改网络结构、组件或缩放方式,以获得固有的鲁棒性。2.架构修改级别:块级:更改网络内单个构建块的设计(例如,残差块)。网络缩放:更改网络的深度、宽度和其他宏观缩放参数。3.设计方法:经验实
- 文献阅读(42)——使用深度学习在眼底照中检测糖网并分类(综述)
柚子味的羊
文献阅读深度学习分类人工智能
使用深度学习在眼底照中检测糖网并分类(综述)Deeplearningfordiabeticretinopathydetectionandclassificationbasedonfundusimages:AreviewIF=6.698/Q1文章目录使用深度学习在眼底照中检测糖网并分类(综述)先验知识/知识拓展文章结构文章结果1.introduction方法1.眼底图像一般的分析pipeline2.
- 【论文精读CVPR_2023】DiffSwap: High-Fidelity and Controllable Face Swapping via 3D-Aware Masked Diffusion
旋转的油纸伞
人脸相关人工智能从入门到实战3dFaceSwappingAI换脸扩散模型
【论文精读CVPR_2023】DiffSwap:High-FidelityandControllableFaceSwappingvia3D-AwareMaskedDiffusion一、前言Abstract1.Introduction2.RelatedWorkFaceSwapping.DiffusionModels.3.Method3.1.Preliminaries:DiffusionModels3
- 机器学习第二十五周周报 ConvLSTM
沽漓酒江
机器学习人工智能
文章目录week25ConvLSTM摘要Abstract一、李宏毅机器学习二、文献阅读1.题目2.abstract3.网络架构3.1降水预报问题的建模3.2ConvolutionalLSTM3.3编码-预测结构4.文献解读4.1Introduction4.2创新点4.3实验过程4.3.1Moving-MNISTDataset4.3.2雷达回波数据集4.4结论三、基于pytorch实现ConvLST
- 机器学习第二十八周周报 PINNs2
沽漓酒江
机器学习人工智能
文章目录week28PINNs2摘要Abstract一、Lipschitz条件二、文献阅读1.题目数据驱动的偏微分方程2.连续时间模型3.离散时间模型4.结论三、CLSTM1.任务要求2.实验结果3.实验代码3.1模型构建3.2训练过程代码小结参考文献week28PINNs2摘要本文主要讨论PINN。本文简要介绍了Lipschitz条件。其次本文展示了题为Physics-informedneura
- 文献阅读:金鱼端脑细胞类型图谱揭示了空间结构和细胞类型进化的多样性
程序员
:::block-1文献介绍文献题目Atelencephaloncelltypeatlasforgoldfishrevealsdiversityintheevolutionofspatialstructureandcelltypes\研究团队AmitZeisel(以色列理工学院)、RonenSegev(本·古里安大学)\发表时间2023-11-01\发表期刊ScienceAdvances\影响因子
- 文献阅读-nomogram文章(七)
cHarden13
题目:DevelopmentandValidationofaRadiomicsNomogramforPreoperativePredictionofLymphNodeMetastasisinColorectalCancerlogistic回归;放射组学;结直肠癌;淋巴结转移ref:医学方:临床医生的逆袭:深入解析临床研究预测类文章思路,带你成为科研“大牛”!一.纳入病人纳入2007.2-2010.
- 【图像配准】CVPRW21 - 深度特征匹配 DFM
我是大黄同学呀
读点论文-其他深度学习计算机视觉人工智能
文章目录相识相知回顾收录于CVPR2021ImageMatchingWorkshop,github地址:https://github.com/ufukefe/DFM相识图像配准(ImageRegistration)是计算机视觉领域中的一项重要任务,其旨在将不同角度/时间/模态等条件下获取的两张或多张图像进行匹配、叠加。图像匹配的核心在于找到每两幅图像间的对应关系(可以通过这个对应关系进行相互映射)
- 论文阅读:GamutMLP A Lightweight MLP for Color Loss Recovery
Matrix_11
计算摄影与图像处理论文阅读
这篇文章是关于色彩恢复的一项工作,发表在CVPR2023,其中之一的作者是MichaelS.Brown,这个老师是加拿大York大学的,也是ISP领域的大牛,现在好像也在三星研究院担任兼职,这个老师做了很多这种类似的工作,通过一些轻量模型,将一些数据转换过程中的变换关系进行拟合,然后再进行恢复,比如RAW域到sRGB域的转换,这篇文章是wideRGB到sRGB的转换一般相机的ISP或者一些图像编辑
- 【思维导图认证班】戴兰第四幅思维导图作业-日程规划
一为宝贝
我没有选择一日的时间来进行规划,而是以一个市级课题的完成来规划具体的步骤,因为这段时间都在集中做课题,没有安排其他的事情,所以没安排具体的时间。步骤分四部分:准备、撰写、查重和提交。准备又分为文献阅读准备和人员访谈准备;撰写分为结题报告、成果鉴定、成果要报。查重为知网,小于30%。提交分电子版和纸质版。心得:撰写前梳理整个课题的环节,撰写中边阅读文献边记录自己撰写的思路,撰写后按照思维导图傻瓜式准
- Pyramid Stereo Matching Network
Songger
https://s3.eu-central-1.amazonaws.com/avg-kitti/data_scene_flow.zipThisrepositorycontainsthecode(inPyTorch)for"PyramidStereoMatchingNetwork"paper(CVPR2018)byJia-RenChangandYong-ShengChen.Citation@inpr
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l