/* * [题意] * 给出第一天是星期几,给出n,k * 第i天记忆的单词数是(i^k),其中特殊地:星期六、日记忆的单词数为0 * 问这n天一共记忆了多少个单词? * [解题方法] * 1、先说怎么求f[n][k] = (1^k)+(2^k)+(3^k)+...+(n^k) * 原式 = (0+1)^k + (1+1)^k + (2+1)^k +...+ ((n-1)+1)^k * 设:C(i,j)为组合数,i种元素取j种的方法数 * 由二次多项式得: * ((n-1)+1)^k = C(k,0) + C(k,1)*(n-1) +...+ C(k,k)*((n-1)^k) * ((n-2)+1)^k = C(k,0) + C(k,1)*(n-2) +...+ C(k,k)*((n-2)^k) * ((n-3)+1)^k = C(k,0) + C(k,1)*(n-3) +...+ C(k,k)*((n-3)^k) * ... ... ... * (1+1)^k = C(k,0) + C(k,1)*1 +...+ C(k,k)*1 * (0+1)^k = C(k,0) * 所以得递推式: * f[n][k] = C(k,0)*f[n-1][0] + C(k,1)*f[n-1][1] +...+ C(k,k)*f[n-1][k] + 1 * { 注:+1是因为最后一个式子"(0+1)^k = C(k,0)" } * 所以得矩阵: * |C(0,0) 0....................0 1| |f[n-1][0]| |f[n][0]| * |C(1,0) C(1,1) 0.............0 1| |f[n-1][1]| |f[n][1]| * |...............................| |.........| |.......| * |C(j,0) C(j,1)...C(j,j) 0....0 1| * |f[n-1][j]| = |f[n][j]| * |...............................| |.........| |.......| * |C(k,1) C(k,2) C(k,3)...C(k,k) 1| |f[n-1][k]| |f[n][k]| * |0...........................0 1| |1 | |1 | * 2、分别求星期六、日的总值,用上面所求到的值减去这两个本不应该算的值就是答案 * 设第一天是星期p, 则这n天有Ex=(n+p)/7个星期天,有Ey=(n+p-1)/7个星期六 * ①:易得第一个星期天的记忆单词数:7-p+1 = 7+(1-p) * 设g[Ex][k]为所有星期天所记单词数 * g[Ex][k] = (7+(1-p))^k + (2*7+(1-p))^k + (3*7+(1-p))^k +...+ (Ex*7+(1-p))^k * 由二次多项式得: * (Ex*7+(1-p))^k = C(k,0)*((1-p)^k) +...+ C(k,k)*(7^k)*(Ex^k) * ((Ex-1)*7+(1-p))^k = C(k,0)*((1-p)^k) +...+ C(k,k)*(7^k)*((Ex-1)^k) * ((Ex-2)*7+(1-p))^k = C(k,0)*((1-p)^k) +...+ C(k,k)*(7^k)*((Ex-2)^k) * ... ... * (1*7+(1-p))^k = C(k,0)*((1-p)^k) +...+ C(k,k)*(7^k)*1 * 所以得递推式: * g[Ex][k] = C(k,0)*((1-p)^k)*f[Ex][0] +...+ C(k,k)*(7^k)*f[Ex][k] * 即在上面的矩阵基础上加一行即可求g[Ex](令n=Ex): * |C(0,0) 0......................0 1 0| |f[n ][0]| |f[n+1][0]| * |C(1,0) C(1,1) 0...............0 1 0| |f[n ][1]| |f[n+1][1]| * |...................................| |.........| |.........| * |C(j,0) C(j,1)...C(j,j) 0......0 1 0| * |f[n ][j]| = |f[n+1][j]| * |...................................| |.........| |.........| * |C(k,0) C(k,1) C(k,2).....C(k,k) 1 0| |f[n ][k]| |f[n+1][k]| * |0.............................0 1 0| |1 | |1 | * |C(k,0)*((1-p)^k)...C(k,k)*(7^k) 0 0| |g[n-1][k]| |g[n ][k]| * ②:易得第一个星期六的记忆单词数:7-p = 7+(-p),同理可求所有星期六的记忆单词总数 * 于是问题解决。 */ #include <iostream> #include <stdio.h> #include <string.h> using namespace std; #define M 15 #define LL long long #define FF(i, n) for(int i = 0; i < n; i++) int ans[M], mod = 1000000007; int ret[M][M], C[M][M]; int init[M][M]; void ini(int n) { memset(init, 0, sizeof(init)); FF(i, n-1) FF(j, i+1) init[i][j] = C[i][j]; FF(i, n) { ans[i] = 1; init[i][n-1] = 1; } } void matmul(int a[][M], int b[][M], int n) { int tp[M][M] = {0}; FF(i, n) FF(k, n) if(a[i][k]) FF(j, n) if(b[k][j]) tp[i][j] = (tp[i][j] + (LL)a[i][k]*b[k][j]) % mod; FF(i, n) FF(j, n) a[i][j] = tp[i][j]; } void matmul(int a[], int b[][M], int n) { int tp[M] = {0}; FF(j, n) if(a[j]) FF(i, n) if(b[i][j]) tp[i] = (tp[i] + (LL)b[i][j]*a[j]) % mod; FF(i, n) a[i] = tp[i]; } void qmod(int n, int b) //矩阵快速幂 { FF(i, n) FF(j, n) ret[i][j] = (i==j); for ( ; b; b >>= 1) { if (b & 1) matmul(ret, init, n); matmul(init, init, n); } } int cal(int a, int b) //快速幂求(a^b) % mod { int res = 1; for ( ; b; b >>= 1) { if (b & 1) res = (LL)res * a % mod; a = (LL)a * a % mod; } return res; } int run(int n, int b, int x) { qmod(n, b); matmul(ans, ret, n); return ans[x]; } int main() { int t, cc = 0, p, a, b, c, n, k, i, j; for (i = 0; i < M; i++) C[i][0] = C[i][i] = 1; for(i = 2; i < M; i++) for(j = 1; j < i; j++) C[i][j] = ((LL)C[i-1][j-1] + C[i-1][j]) % mod; char s[20]; scanf("%d", &t); while (t--) { scanf("%s", s); if (s[0] == 'M') p = 1; else if (s[0] == 'T') { if (s[1] == 'u') p = 2; else p = 4; } else if (s[0] == 'W') p = 3; else if (s[0] == 'F') p = 5; else if (s[0] == 'S') { if (s[1] == 'a') p = 6; else p = 7; } scanf("%d%d", &n, &k); ini(k+2); a = run(k+2, n-1, k); ini(k+2); for (j = 0; j <= k; j++) init[k+2][j] = (LL)C[k][j]*cal(mod-p, k-j)%mod * cal(7, j) % mod; ans[k+2] = 0; b = run(k+3, (n+p)/7, k+2); ini(k+2); for (j = 0; j <= k; j++) init[k+2][j] = (LL)C[k][j]*cal((mod-p+1)%mod, k-j)%mod * cal(7, j) % mod; ans[k+2] = 0; c = run(k+3, (n+p-1)/7, k+2); int ans = (((LL)a-b-c)%mod + mod) % mod; printf("Case %d: %d\n", ++cc, ans); } return 0; }