基于顺序存储实现的多叉树(5):兄弟遍历
类型定义 在多叉树中,兄弟遍历迭代器有只读、读写、只读反转、读写反转4种,在mtree容器中的 定义如下:
1
typedef sibling_iterator_impl
<
false
,
false
>
sibling_iterator;
2 typedef sibling_iterator_impl < false , true > reverse_sibling_iterator;
3 typedef sibling_iterator_impl < true , false > const_sibling_iterator;
4 typedef sibling_iterator_impl < true , true > const_reverse_sibling_iterator;
2 typedef sibling_iterator_impl < false , true > reverse_sibling_iterator;
3 typedef sibling_iterator_impl < true , false > const_sibling_iterator;
4 typedef sibling_iterator_impl < true , true > const_reverse_sibling_iterator;
接口定义
多叉树的兄弟遍历是指访问给定结点的所有兄弟(包括它自己),下面代码是兄弟遍历迭代器的声明:
1
template
<
bool
is_const,
bool
is_reverse
>
2 class sibling_iterator_impl : public iterator_base_impl < is_const >
3 {
4 friend class mtree<T,false>;
5 typedef iterator_base_impl<is_const> base_type;
6 typedef typename base_type::node_pointer_type node_pointer_type;
7 typedef typename base_type::tree_pointer_type tree_pointer_type;
8 using base_type::tree_;
9 using base_type::off_;
10 using base_type::root_;
11 public:
12 sibling_iterator_impl();
13 sibling_iterator_impl(const base_type& iter);
14 sibling_iterator_impl& operator++();
15 sibling_iterator_impl& operator--();
16 sibling_iterator_impl operator++(int);
17 sibling_iterator_impl operator--(int);
18 sibling_iterator_impl operator + (size_t off);
19 sibling_iterator_impl& operator += (size_t off);
20 sibling_iterator_impl operator - (size_t off);
21 sibling_iterator_impl& operator -= (size_t off);
22 sibling_iterator_impl begin() const;
23 sibling_iterator_impl end() const;
24 protected:
25 void first(no_reverse_tag);
26 void first(reverse_tag);
27 void last(no_reverse_tag);
28 void last(reverse_tag);
29 void increment(no_reverse_tag);
30 void increment(reverse_tag);
31 void decrement(no_reverse_tag);
32 void decrement(reverse_tag);
33 private:
34 void forward_first();
35 void forward_last();
36 void forward_next();
37 void forward_prev();
38 } ;
2 class sibling_iterator_impl : public iterator_base_impl < is_const >
3 {
4 friend class mtree<T,false>;
5 typedef iterator_base_impl<is_const> base_type;
6 typedef typename base_type::node_pointer_type node_pointer_type;
7 typedef typename base_type::tree_pointer_type tree_pointer_type;
8 using base_type::tree_;
9 using base_type::off_;
10 using base_type::root_;
11 public:
12 sibling_iterator_impl();
13 sibling_iterator_impl(const base_type& iter);
14 sibling_iterator_impl& operator++();
15 sibling_iterator_impl& operator--();
16 sibling_iterator_impl operator++(int);
17 sibling_iterator_impl operator--(int);
18 sibling_iterator_impl operator + (size_t off);
19 sibling_iterator_impl& operator += (size_t off);
20 sibling_iterator_impl operator - (size_t off);
21 sibling_iterator_impl& operator -= (size_t off);
22 sibling_iterator_impl begin() const;
23 sibling_iterator_impl end() const;
24 protected:
25 void first(no_reverse_tag);
26 void first(reverse_tag);
27 void last(no_reverse_tag);
28 void last(reverse_tag);
29 void increment(no_reverse_tag);
30 void increment(reverse_tag);
31 void decrement(no_reverse_tag);
32 void decrement(reverse_tag);
33 private:
34 void forward_first();
35 void forward_last();
36 void forward_next();
37 void forward_prev();
38 } ;
接口实现
下面重点讲述兄弟遍历中 4种定位方法的具体实现,随后列出 其它所有方法的实现代码。
(1)fo rward_first:求正向 第一 个兄弟, 就是其父结点的第一个孩子,代码如下:
1
template
<
typename T
>
2 template < bool is_const, bool is_reverse >
3 inline void mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::forward_first()
4 {
5 node_pointer_type p_node = &(*tree_)[root_];
6 off_ = root_ + p_node->first_child_;
7 }
2 template < bool is_const, bool is_reverse >
3 inline void mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::forward_first()
4 {
5 node_pointer_type p_node = &(*tree_)[root_];
6 off_ = root_ + p_node->first_child_;
7 }
1
template
<
typename T
>
2 template < bool is_const, bool is_reverse >
3 inline void mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::forward_last()
4 {
5 node_pointer_type p_node = &(*tree_)[root_];
6 off_ = root_ + p_node->last_child_;
7 }
2 template < bool is_const, bool is_reverse >
3 inline void mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::forward_last()
4 {
5 node_pointer_type p_node = &(*tree_)[root_];
6 off_ = root_ + p_node->last_child_;
7 }
1
template
<
typename T
>
2 template < bool is_const, bool is_reverse >
3 inline void mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::forward_next()
4 {
5 node_pointer_type p_node = &(*tree_)[off_];
6 p_node->next_sibling_ ? off_ += p_node->next_sibling_ : off_ = tree_->size();
7 }
2 template < bool is_const, bool is_reverse >
3 inline void mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::forward_next()
4 {
5 node_pointer_type p_node = &(*tree_)[off_];
6 p_node->next_sibling_ ? off_ += p_node->next_sibling_ : off_ = tree_->size();
7 }
1
template
<
typename T
>
2 template < bool is_const, bool is_reverse >
3 inline void mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::forward_prev()
4 {
5 node_pointer_type p_node = &(*tree_)[off_];
6 p_node->prev_sibling_ ? off_ -= p_node->prev_sibling_ : off_ = tree_->size();
7 }
2 template < bool is_const, bool is_reverse >
3 inline void mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::forward_prev()
4 {
5 node_pointer_type p_node = &(*tree_)[off_];
6 p_node->prev_sibling_ ? off_ -= p_node->prev_sibling_ : off_ = tree_->size();
7 }
1
template
<
typename T
>
2 template < bool is_const, bool is_reverse >
3 inline mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::sibling_iterator_impl()
4 :base_type()
5 {
6 }
7 template < typename T >
8 template < bool is_const, bool is_reverse >
9 inline mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::sibling_iterator_impl( const base_type & iter)
10 :base_type(iter)
11 {
12 if (!iter.is_null())
13 {
14 node_pointer_type p_node = &(*tree_)[off_];
15 p_node->parent_ ? root_ = off_ - p_node->parent_: root_ = tree_->size();
16 }
17
18 }
2 template < bool is_const, bool is_reverse >
3 inline mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::sibling_iterator_impl()
4 :base_type()
5 {
6 }
7 template < typename T >
8 template < bool is_const, bool is_reverse >
9 inline mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::sibling_iterator_impl( const base_type & iter)
10 :base_type(iter)
11 {
12 if (!iter.is_null())
13 {
14 node_pointer_type p_node = &(*tree_)[off_];
15 p_node->parent_ ? root_ = off_ - p_node->parent_: root_ = tree_->size();
16 }
17
18 }
(6)公有方法的实现,代码如下:
1
template
<
typename T
>
2 template < bool is_const, bool is_reverse >
3 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >&
4 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator ++ ()
5 {
6 increment(typename reverse_trait<is_reverse>::type());
7 return *this;
8 }
9 template < typename T >
10 template < bool is_const, bool is_reverse >
11 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >&
12 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator -- ()
13 {
14 decrement(typename reverse_trait<is_reverse>::type());
15 return *this;
16 }
17 template < typename T >
18 template < bool is_const, bool is_reverse >
19 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >
20 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator ++ ( int )
21 {
22 sibling_iterator_impl<is_const,is_reverse> iter(*this);
23 ++(*this);
24 return iter;
25 }
26 template < typename T >
27 template < bool is_const, bool is_reverse >
28 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >
29 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator -- ( int )
30 {
31 sibling_iterator_impl<is_const,is_reverse> iter(*this);
32 --(*this);
33 return iter;
34 }
35 template < typename T >
36 template < bool is_const, bool is_reverse >
37 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >
38 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator + (size_t off)
39 {
40 sibling_iterator_impl<is_const,is_reverse> iter(*this);
41 iter += off;
42 return iter;
43 }
44 template < typename T >
45 template < bool is_const, bool is_reverse >
46 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >&
47 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator += (size_t off)
48 {
49 while (off)
50 {
51 if (base_type::is_null()) break;
52 ++(*this); --off;
53 }
54 return *this;
55 }
56 template < typename T >
57 template < bool is_const, bool is_reverse >
58 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >
59 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator - (size_t off)
60 {
61 sibling_iterator_impl<is_const,is_reverse> iter(*this);
62 iter -= off;
63 return iter;
64 }
65 template < typename T >
66 template < bool is_const, bool is_reverse >
67 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >&
68 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator -= (size_t off)
69 {
70 while (off)
71 {
72 if (base_type::is_null()) break;
73 --(*this); --off;
74 }
75 return *this;
76 }
77 template < typename T >
78 template < bool is_const, bool is_reverse >
79 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >
80 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::begin() const
81 {
82 sibling_iterator_impl<is_const,is_reverse> iter(*this);
83 iter.first(typename reverse_trait<is_reverse>::type());
84 return iter;
85 }
86 template < typename T >
87 template < bool is_const, bool is_reverse >
88 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >
89 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::end() const
90 {
91 sibling_iterator_impl<is_const,is_reverse> iter(*this);
92 if (tree_)
93 {
94 iter.off_ = tree_->size();
95 }
96 return iter;
97 }
2 template < bool is_const, bool is_reverse >
3 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >&
4 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator ++ ()
5 {
6 increment(typename reverse_trait<is_reverse>::type());
7 return *this;
8 }
9 template < typename T >
10 template < bool is_const, bool is_reverse >
11 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >&
12 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator -- ()
13 {
14 decrement(typename reverse_trait<is_reverse>::type());
15 return *this;
16 }
17 template < typename T >
18 template < bool is_const, bool is_reverse >
19 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >
20 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator ++ ( int )
21 {
22 sibling_iterator_impl<is_const,is_reverse> iter(*this);
23 ++(*this);
24 return iter;
25 }
26 template < typename T >
27 template < bool is_const, bool is_reverse >
28 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >
29 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator -- ( int )
30 {
31 sibling_iterator_impl<is_const,is_reverse> iter(*this);
32 --(*this);
33 return iter;
34 }
35 template < typename T >
36 template < bool is_const, bool is_reverse >
37 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >
38 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator + (size_t off)
39 {
40 sibling_iterator_impl<is_const,is_reverse> iter(*this);
41 iter += off;
42 return iter;
43 }
44 template < typename T >
45 template < bool is_const, bool is_reverse >
46 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >&
47 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator += (size_t off)
48 {
49 while (off)
50 {
51 if (base_type::is_null()) break;
52 ++(*this); --off;
53 }
54 return *this;
55 }
56 template < typename T >
57 template < bool is_const, bool is_reverse >
58 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >
59 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator - (size_t off)
60 {
61 sibling_iterator_impl<is_const,is_reverse> iter(*this);
62 iter -= off;
63 return iter;
64 }
65 template < typename T >
66 template < bool is_const, bool is_reverse >
67 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >&
68 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > :: operator -= (size_t off)
69 {
70 while (off)
71 {
72 if (base_type::is_null()) break;
73 --(*this); --off;
74 }
75 return *this;
76 }
77 template < typename T >
78 template < bool is_const, bool is_reverse >
79 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >
80 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::begin() const
81 {
82 sibling_iterator_impl<is_const,is_reverse> iter(*this);
83 iter.first(typename reverse_trait<is_reverse>::type());
84 return iter;
85 }
86 template < typename T >
87 template < bool is_const, bool is_reverse >
88 inline typename mtree < T, false > ::template sibling_iterator_impl < is_const,is_reverse >
89 mtree < T, false > ::sibling_iterator_impl < is_const,is_reverse > ::end() const
90 {
91 sibling_iterator_impl<is_const,is_reverse> iter(*this);
92 if (tree_)
93 {
94 iter.off_ = tree_->size();
95 }
96 return iter;
97 }
使用示例
(1) 正向遍历某结点的兄弟,代码如下:
1
mtree
<
int
,
false
>
::iterator_base node;
2 mtree < int , false > ::sibling_iterator it = node;
3 mtree < int , false > ::sibling_iterator last = -- it.end();
4 for (it = it.begin();it != it.end(); ++ it)
5 {
6 cout << *it;
7 if (it!=last)
8 cout <<" ";
9 }
2 mtree < int , false > ::sibling_iterator it = node;
3 mtree < int , false > ::sibling_iterator last = -- it.end();
4 for (it = it.begin();it != it.end(); ++ it)
5 {
6 cout << *it;
7 if (it!=last)
8 cout <<" ";
9 }
1
mtree
<
int
,
false
>
::iterator_base node;
2 mtree < int , false > ::reverse_sibling_iterator r_it = node;
3 mtree < int , false > ::reverse_sibling_iterator r_last = -- r_it.end();
4 for (r_it = r_it.begin();r_it != r_it.end(); ++ r_it)
5 {
6 cout << *r_it;
7 if (r_it!=r_last)
8 cout <<" ";
9 }
2 mtree < int , false > ::reverse_sibling_iterator r_it = node;
3 mtree < int , false > ::reverse_sibling_iterator r_last = -- r_it.end();
4 for (r_it = r_it.begin();r_it != r_it.end(); ++ r_it)
5 {
6 cout << *r_it;
7 if (r_it!=r_last)
8 cout <<" ";
9 }