- 【2024 CVPR-Backbone】RepViT: Revisiting Mobile CNN From ViT Perspective
无敌悦悦王
文献阅读cnn人工智能神经网络计算机视觉图像处理python深度学习
摘要近期,轻量级视觉Transformer(ViT)在资源受限的移动设备上表现出比轻量级卷积神经网络(CNN)更优异的性能和更低的延迟。研究人员已发现轻量级ViT与轻量级CNN之间存在许多结构关联,但二者在模块结构、宏观和微观设计上的显著架构差异尚未得到充分研究。本研究从ViT视角重新审视轻量级CNN的高效设计,并强调其在移动设备上的应用前景。具体而言,我们通过整合轻量级ViT的高效架构设计,逐步
- FB-OCC: 3D Occupancy Prediction based on Forward-BackwardView Transformation
justtoomuchforyou
智驾
NVidia,CVPR20233DOccupancyPredictionChallengeworkshoppaper:https://arxiv.org/pdf/2307.1492code:https://github.com/NVlabs/FB-BEV大参数量imagebackboneInternImage-H,1B外部数据集预训练:object365nuscenes:有点云label,强化网络
- 构建医学文献智能助手:基于 LangChain 的专业领域 RAG 系统实践
前言在当今医疗科技快速发展的时代,每天都有数以千计的医学研究成果在全球范围内发表。从临床试验报告到基础研究论文,从流行病学调查到药物研发数据,这些专业文献承载着推动医学进步的重要知识。然而,面对如此海量且专业性极强的文献资料,医疗从业者往往感到力不从心。如何在有限的时间内,准确把握文献核心价值,并将其转化为临床实践的指导?这个问题一直困扰着整个医疗行业。1.项目背景与业务价值1.1医学文献阅读的困
- CVPR 2024 3D方向总汇包含(3DGS、三维重建、深度补全、深度估计、全景定位、表面重建和特征匹配等)
1、3D方向Rapid3DModelGenerationwithIntuitive3DInputInstantaneousPerceptionofMovingObjectsin3DNEAT:Distilling3DWireframesfromNeuralAttractionFields⭐codeSculptingHolistic3DRepresentationinContrastiveLangua
- Gen AI:重塑未来的创造力工具箱
一杯酒zpy
人工智能
目录页一、GenAI工具箱助力大学生涯1.通用GenAI工具2.GenAI科研辅助1.文献阅读与论文写作2.数据分析与可视化3.AI翻译工具二、GenAI办公、学习助手1.PPT制作2.表格制作3.AI思维导图4.AI办公5.AI图像处理6.AI视频处理7.AI音频处理8.AI编程工具9.AI搜索引擎说明:网盘资源密码获取:关注微信公众号【土木岛】,后台回复文件框中提示的对应关键词自动发送。点击查
- MIAOYUN | 每周AI新鲜事儿(06.14-06.20)
人工智能算法机器学习深度学习
紧跟技术浪潮,洞察行业未来,MIAOYUN《每周AI新鲜事儿》,为您精选全球AI领域的最新动态,涵盖AI技术突破、行业动态、趋势发展、前沿政策与学术研究,带您走在智能时代前沿,一起来回顾本周发生的AI新鲜事儿吧!AI开源大模型腾讯混元3D2.1大模型全链路开源6月14日,在CVPR2025(计算机视觉领域顶会之一)上,腾讯混元3D2.1大模型对外全链路开源,其模型权重及架构、训练代码、数据处理流程
- [CVPR 2025] 高效无监督Prompt与偏好对齐驱动的半监督医学分割
alfred_torres
prompt医学图像分割
CVPR2025|优化SAM:高效无监督Prompt与偏好对齐驱动的半监督医学分割论文信息标题:EnhancingSAMwithEfficientPromptingandPreferenceOptimizationforSemi-supervisedMedicalImageSegmentation作者:AishikKonwer,ZhijianYang,ErhanBas,CaoXiao,Pratee
- CVPR2025
摸鱼的肚子
论文阅读深度学习
CVPR论文列表大论文相关,abstactSphereUFormer:AU-ShapedTransformerforSpherical360Perception对360rgb图的深度进行估计CroCoDL:Cross-deviceCollaborativeDatasetforLocalization(没有)SemAlign3D:SemanticCorrespondencebetweenRGB-Im
- CVPR 2024 图像处理方向总汇(图像去噪、图像增强、图像分割和图像恢复等)
点云SLAM
图形图像处理深度学习计算机视觉图像分割图像增强CVPR2024人工智能
1、ImageProgress(图像处理)去鬼影GeneratingContentforHDRDeghostingfromFrequencyView去阴影HomoFormer:HomogenizedTransformerforImageShadowRemoval去模糊UnsupervisedBlindImageDeblurringBasedonSelf-EnhancementLatencyCorr
- CVPR2025|底层视觉(超分辨率,图像恢复,去雨,去雾,去模糊,去噪等)相关论文汇总(附论文链接/开源代码)【持续更新】
Kobaayyy
图像处理与计算机视觉论文相关底层视觉计算机视觉算法CVPR2025图像超分辨率图像复原图像增强
CVPR2025|底层视觉相关论文汇总(如果觉得有帮助,欢迎点赞和收藏)1.超分辨率(Super-Resolution)AdaptiveDropout:UnleashingDropoutacrossLayersforGeneralizableImageSuper-ResolutionADD:AGeneralAttribution-DrivenDataAugmentationFrameworkfor
- 数学符号和标识中英文列表(含义与示例)
纸上笔下
MatheMatiCs算法数学符号英文中文微积分导数
数学符号和标识的参考,涵盖了数学的各个主要分支,并提供清晰的定义和示例,方便快速查找和学习收藏。目录基础数学符号几何符号代数符号线性代数符号概率与统计符号集合论符号逻辑符号微积分与分析符号数字与字母符号特点中英对照:提供符号的英文术语,方便国际交流和文献阅读。应用示例:提供典型数学表达式,例如导数计算(ddx(x2)=2x\frac{d}{dx}(x^2)=2xdxd(x2)=2x)。1.基础数学
- [paper] Look Into Person
AlgoComp
paperreading计算机视觉
(CVPR2017)LookintoPerson:Self-supervisedStructure-sensitiveLearningandANewBenchmarkforHumanParsingPaper:http://www.linliang.net/files/CVPR17_LIP.pdfProject:http://hcp.sysu.edu.cn/lip/index.phpCode:htt
- 会议论文_AI会议 || 如何rebuttal学术论文?
深度强化学习实验室报道来源:https://zhuanlan.zhihu.com/p/104298923作者:魏秀参编辑:DeepRL最近,恰逢CVPR2020rebuttal之前,本文就rebuttle相关的内容进行总结,学术论文是发布自己或团队最新研究进展正式且最快捷的途径,也是和同行交流想法最方便、高效的方式。当同行评议(Peerreview)作为学术成果正式发布的必经之路已运行200余年[
- 【2025CVPR】基于CNN-Transformer的高效量化EfficientQuant模型
清风AI
计算机视觉算法深度学习算法详解及代码复现cnntransformer人工智能深度学习计算机视觉python神经网络
目录一、研究背景与挑战二、核心方法:EfficientQuant架构1.结构感知块识别算法2.卷积块的均匀量化3.Transformer块的Log2量化三、创新点与优势1.结构感知量化策略2.高效硬件适配3.边缘部署友好四、实验验证1.数据集与指标2.对比实验(1)与其他PTQ方法的对比(2)边缘设备实测五、代码实现要点1.Log2量化核心代码2.模型部署流程六、可视化分析1.权重分布对比2.边缘
- RAG 工业落地方案框架(Qanything、RAGFlow、FastGPT、智谱RAG)细节比对!CVPR自动驾驶最in挑战赛赛道,全球冠军被算力选手夺走了
代码讲故事
学术相关自动驾驶人工智能机器学习RAGCVPRQanythingFastGPT
RAG工业落地方案框架(Qanything、RAGFlow、FastGPT、智谱RAG)细节比对!CVPR自动驾驶最in挑战赛赛道,全球冠军被算力选手夺走了。本文详细比较了四种RAG工业落地方案——Qanything、RAGFlow、FastGPT和智谱RAG,重点分析了它们在知识处理、召回模块、重排模块、大模型处理、Web服务和切词处理等方面的具体实现。Qanything在rerank模块设计上
- CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR2025|MIMO:支持视觉指代和像素对齐的医学视觉语言模型论文信息标题:MIMO:Amedicalvisionlanguagemodelwithvisualreferringmultimodalinputandpixelgroundingmultimodaloutput作者:YanyuanChen,DexuanXu,YuHuang,等单位:北京大学软件与微电子学院、计算机科学学院、第六医
- YOLOv2 中非极大值抑制(NMS)机制详解与实现
要努力啊啊啊
计算机视觉YOLO目标跟踪人工智能计算机视觉深度学习
YOLOv2中NMS的详解一、什么是NMS?定义:NMS(非极大值抑制)是一种目标检测中的后处理技术,用于去除重复预测的边界框,保留置信度最高且不重叠的边界框。目标:提高检测结果的准确性;避免同一物体被多次检测;减少误检和冗余框;二、YOLOv1中的NMS实现来源依据:来自YouOnlyLookOnce:Unified,Real-TimeObjectDetection(CVPR2016)输出结构回
- 2022-2023 ICCV、ECCV、CVPR关于有感自动驾驶的论文
木寒夏
自动驾驶人工智能机器学习
2022-2023ICCV、ECCV、CVPR关于有感自动驾驶的论文1全景分割【ECCV2022】|4D-STOP:基于时空对象方案生成和聚合的4DLiDAR全景分割|4D-StOP:PanopticSegmentationof4DLiDARUsingSpatio-TemporalObjectProposalGenerationandAggregation|论文链接|代码链接【ECCV2022】|
- 2024 CVPR Video ReCap Recursive Captioning of Hour-Long Videos Methods Notes
努力还债的学术吗喽
videocaption人工智能深度学习神经网络python自然语言处理计算机视觉
本文为个人论文核心内容Method精读笔记摘录,原文为2024CVPRVideoReCapRecursiveCaptioningofHour-LongVideos,需要更详细的论文精读Markdown解析,关注私戳包主领取在这里提供原文链接https://arxiv.org/pdf/2402.13250文章目录0.Abstract在这里插入图片描述1.Introduction【SimpleConc
- 图像匹配算法 笔记2025
AI算法网奇
深度学习宝典计算机视觉人工智能
目录1.RoMa(RobustDenseFeatureMatching,CVPR2024)OmniGlue2.Deep‑Image‑Matching(2024)3.OpenGlue️4.XFeat(CVPR2024)⚡5.LightGlue(ICCV2023)6.LiftFeat(ICRA2025)7.DMESA(2024)1.RoMa(RobustDenseFeatureMatching,CVP
- 【CVPR 2025】1 论文模板中文版详细指南:从格式到提交要求
【CVPR2025】1论文模板中文版详细指南:从格式到提交要求写在最前面1.论文类型和使用的模板2.摘要部分格式3.论文正文格式要求4.页边距和页码设置5.标题与字体规范6.数学公式和引用7.脚注与参考文献8.图表与颜色的使用9.最终版本提交要求10.补充材料的处理总结你好呀!我是是Yu欸2024每日百字篆刻时光,感谢你的陪伴与支持~欢迎一起踏上探险之旅,挖掘无限可能,共同成长!写在最前面版权声明
- 【论文解读】CVPR 2024 DSL-FIQA :全新人脸面部图像质量评估算法(附论文地址)
牧锦程
论文解读算法
论文地址:https://openaccess.thecvf.com/content/CVPR2024/papers/Chen_DSL-FIQA_Assessing_Facial_Image_Quality_via_Dual-Set_Degradation_Learning_and_CVPR_2024_paper.pdf这篇论文标题为"DSL-FIQA:AssessingFacialImageQu
- 大模型理解与生成三维点云:CVPR《GPT4Point: A Unified Framework for Point-Language Understanding and Generation》介绍
AI菜鸟
大语言模型文献调研语言模型3d
大模型理解与生成三维点云:CVPR2024论文《GPT4Point:AUnifiedFrameworkforPoint-LanguageUnderstandingandGeneration》本文是关于CVPR2024最新论文《GPT4Point:AUnifiedFrameworkforPoint-LanguageUnderstandingandGeneration》的简要介绍。GPT4Point是
- CVPR 2025 看点:扩散模型如何颠覆零样本学习
Angelina_Jolie
计算机视觉学习机器学习深度学习
扩散模型(DiffusionModel)是一种生成式模型,能够逐步模拟数据的生成过程。它通过一系列的反向扩散过程,将噪声逐步去除,最终生成与训练数据相似的样本。扩散模型近年来在图像生成、文本生成等领域取得了显著成果,能够生成质量极高且多样性丰富的内容。其核心思想是将数据分解成一系列的噪声步骤,然后通过反向过程还原回原始数据,因此被视为一种逐步逼近真实数据分布的有效方法。在零样本学习(Zero-Sh
- 【2025CVPR】模型融合新范式:PLeaS算法详解(基于排列与最小二乘的模型合并技术)
清风AI
计算机视觉算法深度学习算法详解及代码复现算法python神经网络人工智能深度学习计算机视觉
本文深入解析ICLR2025顶会论文《PLeaS:MergingModelswithPermutationsandLeastSquares》,揭示模型融合领域突破性进展.一、问题背景:模型合并的核心挑战随着开源模型的爆发式增长,如何高效合并多个专用模型成为关键挑战。传统方法存在三大痛点:初始化依赖:现有方法(如TaskArithmetic)要求模型源自相同预训练基础尺寸僵化:合并后模型必须保持原始
- [2025CVPR]Multi-Layer Visual Feature Fusion in Multimodal LLMs 多模态大语言模型中的多层视觉特征融合
清风AI
计算机视觉算法深度学习算法详解及代码复现语言模型人工智能自然语言处理
深入解析:多模态大语言模型中的多层视觉特征融合——原理、实践与最佳方案论文:Multi-LayerVisualFeatureFusioninMultimodalLLMs:Methods,Analysis,andBestPractices一、问题本质:为什么需要多层视觉特征?当前多模态大语言模型(MLLMs)存在两大核心痛点:视觉层选择随意性:现有方法(如MiniCPM、LLaVA)常仅用最后一层特
- 视觉前沿算法复现环境配置1——2025CVPR风格迁移网络SaMam
张书名
视觉前沿算法复现环境配置算法
本文记录2025CVPR风格迁移网络——SaMam的环境配置方法。风格迁移网络的目的是首先学习模板图像的风格样式,然后通过深度学习方法把待转换的图像转换成与模板图像相似的风格样式,这种方法可以考虑用在目标检测等场景中对数据集进行扩增,达到丰富数据集的目的。它的效果可以直观地通过下面这张图展示出来:代码的github官网链接为:https://github.com/Chernobyllight/Sa
- 论文阅读笔记—— Multi-attentional Deepfake Detection
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录Multi-attentionalDeepfakeDetection背景创新贡献方法注意图正则化的区域独立性损失注意力引导的数据增强实验Multi-attentionalDeepfakeDetection来源:CVPR2021作者:HanqingZhao1WenboZhou1,†DongdongChen2TianyiWei1WeimingZhang1,†NenghaiYu1单位:Unive
- CVPR2023最佳论文候选 | MAC: 基于极大团的3D配准
计算机视觉工坊
3D视觉从入门到精通macos3d
本文作者:3D视觉工坊@Vallee|来源:3D视觉工坊GitHub代码:https://github.com/zhangxy0517/3D-Registration-with-Maximal-Cliques(暂未开源)3D点云配准(PCR)是计算机视觉中的一个基本问题,其目的是寻找对齐点云对的最优位姿。本文提出了一种基于极大团(Maximalcliques,MAC)的3D配准方法,其关键思想是放
- CVPR 2025 | 迈向可泛化的场景变化检测
小白学视觉
计算机顶会顶刊论文解读深度学习计算机视觉人工智能计算机顶会论文解读CVPR
论文信息题目:TowardsGeneralizableSceneChangeDetection迈向可泛化的场景变化检测作者:Jae-wooKim、Ue-hwanKim论文创新点提出全新任务公式化方法:提出GeSCD,首次全面解决场景变化检测研究中的泛化问题和时间一致性问题,为该领域研究提供新的方向与思路。设计零样本场景变化检测模型:设计GeSCF模型,这是首个零样本场景变化检测模型。它以零样本方式
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟