- 医图论文 CVPR‘24 | 适应医学图像中泛化异常检测的视觉-语言模型
小白学视觉
医学图像处理论文解读语言模型人工智能计算机视觉医学图像顶会医学图像处理CVPR论文解读
论文信息题目:AdaptingVisual-LanguageModelsforGeneralizableAnomalyDetectioninMedicalImages适应医学图像中泛化异常检测的视觉-语言模型作者:ChaoqinHuang,AofanJiang,JinghaoFeng,YaZhang,XinchaoWang,YanfengWang源码:https://github.com/Medi
- 论文阅读:Deep Stacked Hierarchical Multi-patch Network for Image Deblurring
行走的歌
文献阅读图像处理计算机视觉机器学习深度学习图像去雨图像处理
这是一篇去模糊的文章,后来发现直接套用不合适,无法获取到相应的特征,遂作罢,简单记录一下。2019CVPR:DMPHN这篇文章是2019CVPR的一篇去模糊方向的文章,师兄分享的时候看了一下,后来也发现这个网络结构在很多workshop以及文章中都见过。文章:ArXiv代码:Github在去模糊领域,目前的多尺度和尺度循环模型存在一些问题:1)由粗到细方案中的去卷积/上采样操作导致运行时间昂贵;2
- 论文笔记:Deep Algorithm Unrolling for Blind Image Deblurring
爱学习的小菜鸡
论文笔记去模糊图像处理神经网络
这是一篇CVPR2020的去模糊论文,主要是通过传统与深度相结合,将迭代次数变成神经网络的层数,使网络结构的网络结构更加具有解释性。主要贡献:DeepUnrollingforBlindImageDeblurring(DUBLID):提出一种可解释的神经网络结构叫做DUBLID,首先提出一种迭代算法,该算法被认为是梯度域中传统的广义全变分正则方法(generalizedTV-regularizeda
- 文献阅读 | PNAS | 经验和发育中的前额叶皮层
程序员
:::block-1文献介绍文献题目:经验和发育中的前额叶皮层\研究团队:BryanKolb(加拿大莱斯布里奇大学)\发表时间:2012-10-08\发表期刊:PNAS\影响因子:9.4\DOI:10.1073/pnas.1121251109:::摘要前额叶皮层(PFC)接收来自所有其他皮层区域的输入,并负责规划和指导跨时间的运动、认知、情感和社会行为。它具有较长的发育过程,这使得它能够通过经验获
- 51-52 CVPR 2024 | Generalized Predictive Model for Autonomous Driving,自动驾驶通用预测模型
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶人工智能机器学习stablediffusionAIGC计算机视觉
24年3月,上海AILab联合香港科技大学、香港大学等发布GeneralizedPredictiveModelforAutonomousDriving。作者提出了通用的大规模自动驾驶视频预测模型GenAD,在实现过程中,进一步提出了迄今为止最大的自动驾驶场景训练数据集OpenDV-2K。OpenDV-2K数据集具有开放领域的多样性:地理位置,地形,天气条件,安全关键场景,传感器设置,交通要素等。从
- 51-53 CVPR 2024 | DriveWorld:通过自动驾驶世界模型进行 4D 预训练场景理解 (含模型数据流梳理)
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶人工智能AIGCstablediffusion计算机视觉智慧城市
24年5月,北京大学、国防创新研究院无人系统技术研究中心、中国电信人工智能研究院联合发布了DriveWorld:4DPre-trainedSceneUnderstandingviaWorldModelsforAutonomousDriving。DriveWorld在UniAD的基础上又有所成长,提升了自动驾驶目标检测、目标追踪、3D占用、运动预测及规划的性能,后期扩大数据集和调整骨干网络大小应该会
- 【光流】——liteflownet论文与代码浅读
农夫山泉2号
光流计算机视觉深度学习人工智能光流liteflownet
光流,liteflownetcode:mmflowCVPR20181.前言FlowNet2是最先进的光流估计卷积神经网络(CNN),需要超过160M的参数来实现精确的流量估计。在本文中,我们提出了一种替代网络,它在Sintel和KITTI基准测试上优于FlowNet2,同时在模型尺寸上要小30倍,在运行速度上要快1.36倍。这是通过深入研究当前框架中可能被遗漏的架构细节而实现的:(1)我们通过轻量
- 大模型全军覆没,中科院自动化所推出多图数学推理新基准 | CVPR 2025
量子位
关注前沿科技量子位挑战多图数学推理新基准,大模型直接全军覆没?!事情是这样的。近日,中国科学院自动化研究所推出多图数学推理全新基准MV-MATH(该工作已被CVPR2025录用),这是一个精心策划的多图数学推理数据集,旨在全面评估MLLM(多模态大语言模型)在多视觉场景中的数学推理能力。结果评估下来发现,GPT-4o仅得分32.1,类o1模型QvQ得分29.3,所有模型均不及格。具体咋回事,下面接
- NTIRE比赛:技术前沿、国内企业表现与计算机视觉未来展望
AndrewHZ
深度学习新浪潮计算机视觉人工智能深度学习调研报告算法NTIRE画质算法
一、NTIRE比赛概述:图像恢复与增强领域的全球竞技场1.1NTIRE的定位与历史NTIRE(NewTrendsinImageRestorationandEnhancement)是计算机视觉领域最具影响力的国际赛事之一,聚焦于图像恢复与增强技术的前沿探索。自2017年首次举办以来,NTIRE每年与计算机视觉顶会CVPR联合召开,成为学术界与工业界技术实力的重要展示平台。其竞赛内容涵盖图像超分辨率、
- 周报 | 25.3.3-25.3.9文章汇总
双木的木
大模型专栏深度学习拓展阅读人工智能linux服务器deepseekllamaYOLOtransformer
为了更好地整理文章和发表接下来的文章,以后每周都汇总一份周报。周报|25.2.24-25.3.2文章汇总-CSDN博客Datawhale|最新「大模型简史」整理!从Transformer(2017)到DeepSeek-R1(2025)--建议收藏!-CSDN博客AI生成未来|CVPR2025|多模态六边形战士Magma:会点按钮会搬砖,标注竟让AI长出“时空大脑“_magma-8b-CSDN博客机
- 多宠识别:基于计算机视觉的智能宠物管理系统架构解析
深圳市快瞳科技有限公司
计算机视觉宠物系统架构
一、行业痛点与技术方案演进在多宠家庭场景中,传统方案面临三大技术瓶颈:1.生物特征混淆:同品种/毛色宠物识别准确率低于65%2.动态场景适应:进食/奔跑状态下的误检率达30%+3.数据孤岛问题:离线设备无法实现持续学习优化快瞳科技采用**双模态视觉融合架构**,结合轻量化YOLOv7-Tiny模型与CLIP多模态大模型,实现:-98.7%的跨品种宠物识别准确率(CVPR2024最新测试数据)-单次
- 医图论文 CVPR‘24 | OmniMedVQA:用于医学大型视觉语言模型的新型大规模综合评估基准
小白学视觉
医学图像处理论文解读语言模型人工智能自然语言处理CVPR医学图像处理论文解读深度学习
论文信息题目:OmniMedVQA:ANewLarge-ScaleComprehensiveEvaluationBenchmarkforMedicalLVLMOmniMedVQA:用于医学大型视觉语言模型的新型大规模综合评估基准作者:YutaoHu,TianbinLi,QuanfengLu,WenqiShao,JunjunHe,YuQiao,PingLuo源码:https://github.com
- 【YOLOv12改进trick】StarBlock引入YOLOv12,创新涨点优化,含创新点Python代码,方便发论文
zy_destiny
YOLOv12及改进优化创新人工智能深度学习机器学习YOLO神经网络开发语言python
改进模块:StarBlock解决问题:采用StarBlock将输入数据映射到一个极高维的非线性特征空间,生成丰富的特征表示,使得模型在处理复杂数据时更加有效。改进优势:简单粗暴的星型乘法涨点却很明显适用场景:目标检测、语义分割、自然语言处理等多种场景高效紧凑的模型,不适用于大模型思路来源:CVPR2024《RewritetheStars》目录1.设计动机2.启发来源3.将StarBlock引入YO
- 总理在政府工作报告中提到具身智能,so!这是个什么玩意?竟也能帮我发高分顶会
前沿速递AI
具身智能ai人工智能
3月5日,李强总理在政府工作报告时提到,“将建立未来产业投入增长机制,培育生物制造、量子科技、具身智能、6G等未来产业”。在未来具身智能势必会有爆发式的发展。从学术研究的角度来看,具身智能已成为各大顶会的热门议题。以CVPR2025为例,具身智能成功跻身热门研究领域前三,充分展现了其重要性。那么总理提到的具身智能是个什么呢?目前,具身智能的研究主要集中在四个核心方向:具身感知、具身互动、具身智能体
- VoVNet(2019 CVPR)
刘若里
论文阅读人工智能计算机视觉学习笔记网络
论文标题AnEnergyandGPU-ComputationEfficientBackboneNetworkforReal-TimeObjectDetection论文作者YoungwanLee,Joong-wonHwang,SangrokLee,YuseokBae,JongyoulPark发表日期2019年04月22日GB引用>LeeYoungwan,HwangJoong-won,LeeSangr
- 文献阅读 250303-Fire weakens land carbon sinks before 1.5 °C
ZzYH22
笔记
Fireweakenslandcarbonsinksbefore1.5 °C来自##Intro:使用火-植被耦合模型来探索全球变暖水平的区域影响和反馈。讨论了1.5°C的目标是否与在考虑火灾状况变化时避免重大生态系统变化一致。我们发现,火灾开始显著影响全球碳储存的全球变暖水平比工业化前水平高出1.07°C(0.8–1.34°C),并得出结论,火灾已经在降低土地碳汇的有效性方面发挥了重要作用。由于气
- AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
EwanRenton
DLpaperAttnGANtext2imgCVPR2018DAMSM
《AttnGAN:Fine-GrainedTexttoImageGenerationwithAttentionalGenerativeAdversarialNetworks》是CVPR2018文本生成图像的文章,是StackGAN++的后续工作。Abstract在本文中作者提出了一个AttentionalGenerativeAd-versarialNetwork(AttnGAN),一种attent
- AVM 环视拼接 鱼眼相机
选与握
#环视拼接AVM
https://zhuanlan.zhihu.com/p/651306620AVM环视拼接方法介绍从内外参推导IPM变换方程及代码实现(生成AVM环视拼接图)_avm拼接-CSDN博客经典文献阅读之--ExtrinsicSelf-calibrationoftheSurround-viewSystem:AWeakly...(环视系统的外参自标定)-CSDN博客经典文献阅读之--:AWeakly...
- [特殊字符]【CVPR2024新突破】Logit标准化:知识蒸馏中的自适应温度革命[特殊字符]
☞黑心萝卜三条杠☜
论文人工智能论文阅读
文章信息题目:LogitStandardizationinKnowledgeDistillation论文地址:paper代码地址:code年份:2024年发表于CVPR文章主题文章的核心目标是改进知识蒸馏(KD)中的一个关键问题:传统KD方法假设教师和学生模型共享一个全局温度参数(temperature),这导致学生模型需要精确匹配教师模型的logit范围和方差。这种假设不仅限制了学生模型的性能,
- [Github推荐]CVPR2019录用论文下载及可视化论文网站
spearhead_cai
计算机视觉深度学习科研论文CVPRGithub计算机视觉深度学习
简介CVPR是IEEEConferenceonComputerVisionandPatternRecognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议。它是IEEE一年一度的学术性会议,会议的主要内容是计算机视觉与模式识别技术。CVPR是世界顶级的计算机视觉会议(三大顶会之一,另外两个是ICCV和ECCV),本会议每年都会有固
- 51-29 CVPR 2024 | BEV-Planner:开环端到端自动驾驶中自车状态是你所需要的一切吗?
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶人工智能机器学习智慧城市计算机视觉AIGC
本论文是南京大学、英伟达最新CVPR2024工作。蛮幸运的,该论文提出了很多思考,证明了很多最优Paper在落地上车方面的无效性。咱们对待新方法能否成为自动驾驶的最佳实践要审慎。论文名称:IsEgoStatusAllYouNeedforOpen-LoopEnd-to-EndAutonomousDriving?论文链接:https://arxiv.org/abs/2312.03031.代码链接:ht
- 文章精读篇——用于遥感小样本语义分割的可学习Prompt
LiXiang like coding吗
学习prompt人工智能
题目:LearnablePromptforFew-ShotSemanticSegmentationinRemoteSensingDomain会议:CVPR2024Workshop论文:10.48550/arXiv.2404.10307相关竞赛:https://codalab.lisn.upsaclay.fr/competitions/17568年份:2024任务背景小样本语义分割(Few-shot
- 立体匹配常用数据集整理
Scurry﹉
人工智能深度学习计算机视觉
文章目录前言一、常用数据集1.SceneFlow数据集2.KITTI数据集3.Middlebury数据集二、关于自己构建数据集训练的一些问题前言本文主要对立体匹配算法常用的公开数据集进行整理,包括数据集的简要介绍和下载链接,以及自己构建数据集训练的一些问题。一、常用数据集1.SceneFlow数据集Sceneflow数据集是CVPR2016提出的,其目的就是构建一个大规模的合成数据集,用来训练深度
- ShuffleNet V2(2018 CVPR)
刘若里
论文阅读深度学习人工智能学习计算机视觉笔记
论文标题ShuffleNetV2:PracticalGuidelinesforEfficientCNNArchitectureDesign论文作者NingningMa,XiangyuZhang,Hai-TaoZheng,JianSun发表日期2018年07月01日GB引用>NingningMa,XiangyuZhang,Hai-TaoZheng,etal.ShuffleNetV2:Practica
- 文献阅读 250222-A Robust Causal Machine Learning Approach
ZzYH22
笔记
InferringHeterogeneousTreatmentEffectsofCrashesonHighwayTraffic:ADoublyRobustCausalMachineLearningApproach来自##Intro:研究问题:高速公路交通事故对交通系统和经济都产生了相当大的影响。在这种情况下,准确可靠的应急响应对于有效的交通管理至关重要。但是,车祸对交通状态的影响因不同因素而异,并
- 文献阅读(part2)--Towards K-means-friendly spaces Simultaneous deep learning and clustering
GUI Research Group
机器学习python深度聚类
学习笔记,仅供参考文章目录AbstractIntroductionBackgroundandRelatedWorksProposedFormulationOptimizationProcedureInitializationviaLayer-wisePre-Training(通过分层预训练进行初始化)AlternatingStochasticOptimizationExperiments合成数据演
- 【CVPR 2021】Knowledge Review:知识蒸馏新解法
BIT可达鸭
深度学习人工智能计算机视觉模型压缩知识蒸馏
【CVPR2021】KnowledgeReview:知识蒸馏新解法论文地址:主要问题:主要思路:符号假设:具体实现:实验结果:关注我的公众号:联系作者:论文地址:https://jiaya.me/papers/kdreview_cvpr21.pdf主要问题:目前大部分关于KD的方法都是基于相同层或者相同Block之间的知识迁移。但是Teacher往往深层表示抽象的语义信息,底层表示简单的知识的信息
- 51-54 CVPR 2024 | DrivingGaussian:周围动态自动驾驶场景的复合高斯飞溅( Sora能制作动作大片还需要一段时间 )
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶AIGCstablediffusion智慧城市计算机视觉
24年3月,北大、谷歌和加州大学共同发布了DrivingGaussian:CompositeGaussianSplattingforSurroundingDynamicAutonomousDrivingScenes。视图合成和可控模拟可以生成自动驾驶的极端场景CornerCase,这些安全关键情况有助于以更低成本验证和增强自动驾驶系统安全性。DrivingGaussian采用复合高斯飞溅进行全局渲
- 51-31 CVPR’24 | VastGaussian,3D高斯大型场景重建
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶智慧城市AIGC计算机视觉数据挖掘
2024年2月,清华大学、华为和中科院联合发布的VastGaussian模型,实现了基于3DGaussianSplatting进行大型场景高保真重建和实时渲染。Abstract现有基于NeRF大型场景重建方法,往往在视觉质量和渲染速度方面存在局限性。虽然最近3DGaussiansSpltting在小规模和以对象为中心的场景中效果很好,但由于视频内存有限、优化时间长、外观变化明显,将其扩展到大型场景
- CVPR2023 Highlight | ECON:最新单图穿衣人三维重建SOTA算法
3D视觉工坊
3D视觉从入门到精通算法SLAM自动驾驶3D视觉
作者:宁了个宁|来源:计算机视觉工坊在公众号「3D视觉工坊」后台,回复「原论文」可获取论文pdf。添加微信:dddvisiona,备注:三维重建,拉你入群。文末附行业细分群。图1所示。从彩色图像进行人体数字化。ECON结合了自由形式隐式表示的最佳方面,以及明确的拟人化正则化,以推断高保真度的3D人类,即使是宽松的衣服或具有挑战性的姿势。0.笔者个人体会这篇文章讨论了单图像的穿着人类重建问题。隐式方
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟