- AdaBoost算法(AdbBoost Algorithm)—有监督学习方法、非概率模型、判别模型、非线性模型、非参数化模型、批量学习
剑海风云
ArtificialIntelligence人工智能机器学习提升方法AdaBoost
定义输入:训练数据集T={(x1,y1),(x2,y2),⋯ ,(xN,yN)}T=\{(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N)\}T={(x1,y1),(x2,y2),⋯,(xN,yN)},其中,xi∈χ⊆Rn,yi∈y={−1,+1}x_i\in\chi\subseteqR^n,y_i\in{\tty}=\{-1,+1\}xi∈χ⊆Rn,yi∈y={−1,+1}
- 基于Python的机器学习系列(17):梯度提升回归(Gradient Boosting Regression)
会飞的Anthony
人工智能信息系统机器学习机器学习python回归
简介梯度提升(GradientBoosting)是一种强大的集成学习方法,类似于AdaBoost,但与其不同的是,梯度提升通过在每一步添加新的预测器来减少前一步预测器的残差。这种方法通过逐步改进模型,能够有效提高预测准确性。梯度提升回归的工作原理在梯度提升回归中,我们逐步添加预测器来修正模型的残差。以下是梯度提升的基本步骤:初始化模型:选择一个初始预测器h0(x),计算该预测器的预测值。计算残差:
- 基于Python的机器学习系列(16):扩展 - AdaBoost
会飞的Anthony
信息系统机器学习人工智能python机器学习开发语言
简介在本篇中,我们将扩展之前的AdaBoost算法实现,深入探索其细节并进行一些修改。我们将重点修复代码中的潜在问题,并对AdaBoost的实现进行一些调整,以提高其准确性和可用性。1.修复Alpha计算中的问题在AdaBoost中,如果分类器的错误率e为0,则计算出的权重α将是未定义的。为了解决这个问题,我们可以在计算过程中向分母中添加一个非常小的值,以避免除零错误。2.调整学习率sklearn
- 基于CNN-BiLSTM-Adaboost风电功率预测研究(Matlab代码实现)
创新优化代码学习
cnnmatlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、研究方法1.数据准备与预处理2.CNN特征提取3.BiLSTM序列建模4.Adaboost集成学习5.模型训练与评估三、研究优势四、未来展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系
- 【KELM回归预测】基于麻雀算法优化核极限学习SSA-KELM-Adaboost实现风电回归预测附matlab代码
天天酷科研
粉丝福利算法回归学习SSA-KELM-Ada
以下是使用麻雀算法优化核极限学习机(SSA-KELM)和Adaboost算法实现风电回归预测的MATLAB代码示例:matlab复制%导入风电数据load(‘wind_data.mat’);%假设数据存储在wind_data.mat文件中X=wind_data(:,1:end-1);%输入特征Y=wind_data(:,end);%输出标签%数据归一化X=normalize(X,‘range’);
- 每天一个数据分析题(五百零五)- 提升方法
跟着紫枫学姐学CDA
数据分析题库数据分析
提升方法(Boosting),是一种可以用来减小监督式学习中偏差的机器学习算法。基于Boosting的集成学习,其代表算法不包括?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据
- 每天一个数据分析题(五百零六)- 装袋方法
跟着紫枫学姐学CDA
数据分析数据挖掘
装袋方法(bagging)也叫做bootstrapaggregating,是在原始数据集有放回地重采样S次后得到新数据集的一种技术,其代表算法有?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专
- R-CNN、Fast R-CNN、Faster R-CNN实现
今 晚 打 老 虎
面试之CV基础知识深度学习点滴
R-CNN:传统的目标检测算法:使用穷举法(不同大小比例的滑窗)进行区域选择,时间复杂度高对提取的区域进行特征提取(HOG或者SIFT),对光照、背景等鲁棒性差使用分类器对提取的特征进行分类(SVM或Adaboost)R-CNN的过程:采用SelectiveSearch生成类别独立的候选区域使用AlexNet来提取特征,输入是227*227*3,输出是4096将4096维的特征向量送入SVM来分类
- GBDT--梯度提升树
吓得我泰勒都展开了
机器学习决策树算法
目录一梯度提升树的基本思想1梯度提升树pkAdaBoost2GradientBoosting回归与分类的实现二梯度提升树的参数1迭代过程1.1初始预测结果0的设置1.2使用回归器完成分类任务1.3GBDT的8种损失函数2弱评估器结构2.1梯度提升树种的弱评估器复杂度2.2弗里德曼均方误差3梯度提升树的提前停止机制4梯度提升树的袋外数据5缺失参数class_weight与n_jobs三梯度提升树的参
- 集成学习——梯度提升树(GBDT)
wxw_csdn
机器学习集成学习GBDT梯度提升树sklearn
集成学习——梯度提升树(GBDT)1模型算法介绍2sklearn中的实现3参考资料1模型算法介绍GBDT也是集成学习Boosting家族的成员,通过采用加法模型,不断减小训练过程中产生的残差算法。即通过多轮迭代,每轮迭代生成一个弱分类器,并在上一轮分类器残差的基础上进行训练,但是弱学习器限定了只能使用CART回归树模型,且迭代思路与Adaboost(利用前一轮迭代弱学习器的误差率来更新训练集的权重
- 学习笔记 ——GBDT(梯度提升决策树)
dastu
数据挖掘机器学习数据挖掘
一.前言GBDT(GradientBoostingDecisionTree)梯度提升决策树,通过多轮迭代生成若干个弱分类器,每个分类器的生成是基于上一轮分类结果来进行训练的。GBDT使用的也是前向分布算法,这一点和Adaboost类似,但不同的是,GBDT的弱分类器一般为Cart回归树(Adaboost一般不做限制)。这里之所以用回归树的原因是GBDT是利用残差逼近,是累加选择,这就和回归输出的连
- datawhale 10月学习——树模型与集成学习:梯度提升树
SheltonXiao
学习集成学习机器学习决策树
前情回顾决策树CART树的实现集成模式两种并行集成的树模型AdaBoost结论速递本次学习了GBDT,首先了解了用于回归的GBDT,将损失使用梯度下降法进行减小;用于分类的GBDT要稍微复杂一些,需要对分类损失进行定义。学习了助教提供的代码。目录前情回顾结论速递1用于回归的GBDT1.1原理1.2代码实现2用于分类的GBDT2.1原理2.2代码实现1用于回归的GBDT1.1原理与AdaBoost类
- 梯度提升树系列8——GBDT与其他集成学习方法的比较
theskylife
数据挖掘集成学习机器学习人工智能数据挖掘
目录写在开头1.主要集成学习算法对比1.1GBDT1.2随机森林1.3AdaBoost1.4整体对比2.算法性能的比较分析2.1准确率与性能2.2训练时间和模型复杂度2.3应用实例和案例研究3.选择合适算法的标准3.1数据集的特性3.1.1数据规模与维度3.1.2数据质量3.2性能需求3.2.1准确性3.2.2泛化能力3.3训练效率与资源3.3.1训练时间3.3.2计算资源3.4易用性与调参3.4
- Task10-向前分布算法和梯度提升决策树
沫2021
1.前向分步算法前项分布算法可以解决分类问题,也可以解决回归问题。(1)Adaboost的加法模型:在Adaboost的基础上,将多个基分类器合并为一个复杂分类器,是通过计算每个基分类器的加权和。通常情况下这是一个复杂的优化问题,很难通过简单的凸优化的相关知识进行解决。而前向分步算法可以用来求解这种方式的问题,它的基本思路是:因为学习的是加法模型,如果从前向后,每一步只优化一个基函数及其系数,逐步
- AdaBoost 算法
Rnan-prince
机器学习算法Adaboost机器学习
AdaBoost算法是一种经典的集成学习算法,它将多个弱分类器集成起来,以达到较高的分类准确率,广泛应用于数据分类、人脸检测等应用中。尤其在人脸检测方面,AdaBoost是非常经典、成功的一个算法。弱分类器被线性组合成为一个强分类器。一、面临两个问题:在每一轮,如何改变训练数据的概率分布或者权值分布。如何将弱分类器组合成强分类器。二、AdaBoost的思路:提高那些被前一轮弱分类器错误分类样本的权
- AdaBoost算法
小森( ﹡ˆoˆ﹡ )
机器学习算法算法机器学习人工智能
Boosting是一种集成学习方法,AdaBoost是Boosting算法中的一种具体实现。Boosting方法的核心思想在于将多个弱分类器组合成一个强分类器。这些弱分类器通常是简单的模型,比如决策树,它们在训练过程中的错误会被后续的弱分类器所修正。Boosting算法通过逐步增加新的弱分类器来提高整体模型的性能,每个新的弱分类器都专注于之前模型分类错误的样本。AdaBoost(AdaptiveB
- 推荐收藏 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost总结
Pysamlam
作者:ChrisCaohttps://zhuanlan.zhihu.com/p/75468124一.决策树决策树是一个有监督分类模型,本质是选择一个最大信息增益的特征值进行分割,直到达到结束条件或叶子节点纯度达到阈值。下图是决策树的一个示例图:根据分割指标和分割方法,可分为:ID3、C4.5、CART算法。1.ID3算法:以信息增益为准则来选择最优划分属性信息增益的计算是基于信息熵(度量样本集合纯
- 5000字干货 | 决策树、随机森林、bagging、boosting、Adaboost、GBDT、XGBoost总结
数据不吹牛
算法决策树信息熵大数据机器学习
作者:ChrisCaohttps://zhuanlan.zhihu.com/p/75468124大家好,我是小z今天分享一波机器学习的干货~一.决策树决策树是一个有监督分类模型,本质是选择一个最大信息增益的特征值进行输的分割,直到达到结束条件或叶子节点纯度达到阈值。下图是决策树的一个示例图:根据分割指标和分割方法,可分为:ID3、C4.5、CART算法。1.ID3算法:以信息增益为准则来选择最优划
- Bagging的随机森林;Boosting的AdaBoost和GBDT
S1406793
数据分析面试机器学习随机森林boosting算法
集成学习应用实践importnumpyasnpimportos%matplotlibinlineimportmatplotlibimportmatplotlib.pyplotaspltplt.rcParams['axes.labelsize']=14plt.rcParams['xtick.labelsize']=12plt.rcParams['ytick.labelsize']=12importw
- 机器学习(machine learning)大合集
AI信仰者
1、线性分类器怎么理解呢?我们可以把此分类器理解为线性空间的划分,最简单的,在二维空间上,通过直线的划分。第二个理解可以理解为模板匹配,W的每一行可以看做是其中一个类别的模板。每类得分,实际上是像素点和模板匹配度。模板匹配的方式是内积计算。2、机器学习实战之AdaBoost算法boosting算法系列的基本思想,如下图:adaBoost分类器就是一种元算法分类器,adaBoost分类器利用同一种基
- 多维时序 | Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测
机器学习之心
时序预测RF-Adaboost随机森林多变量时间序列预测
多维时序|Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测目录多维时序|Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测预测效果基本介绍程序设计参考资料预测效果基本介绍1.Matlab实现RF-Adaboost随机森林结合Adaboost多变量时间序列预测(完整源码和数据)RF-AdaBoost是一种将RF和AdaBoost两
- Sklearn之StandardScaler(数据预处理)
爱睡觉的琪
sklearn机器学习python
1.哪些机器学习算法不需要(需要)做归一化?概率模型(树形模型)不需要归一化,因为它们不关心变量的值,而是关心变量的分布和变量之间的条件概率,如决策树、RF、XGboost。而像Adaboost、SVM、LR、Knn、KMeans之类的最优化问题就需要归一化。2.StandardScaler原理作用:使得经过处理的数据符合标准正态分布,即均值为0,标准差为1。且是针对每一个特征维度来做的,而不是针
- 时序预测 | MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测
机器学习之心
时序预测CNN-LSTM-AdaCNN-LSTMAdaBoost卷积长短期记忆网络时间序列预测
时序预测|MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测目录时序预测|MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果基本介绍1.MATLAB实现基于CNN-LSTM-AdaBoost卷积长短期记忆网络结合AdaBoost时间序列预测(风
- 时序预测 | MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测
机器学习之心
时序预测CNN-GRU-AdaCNN-GRUAdaBoost卷积门控循环单元时间序列预测
时序预测|MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测目录时序预测|MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果基本介绍1.MATLAB实现基于CNN-GRU-AdaBoost卷积门控循环单元结合AdaBoost时间序列预测(风电功率预测)
- (6)【Python/机器学习/深度学习】Machine-Learning模型与算法应用—使用Adaboost建模及工作环境下的数据分析整理
代码骑士
#python机器学习深度学习
目录一、为什么要使用Adaboost建模?二、泰坦尼克号分析(工作环境)(插曲)Python可以引入任何图形及图形可视化工具三、数据分析四、模型建立1、RandomForestRegressor预测年龄2、LogisticRegression建模引入GridSearchCV引入RandomizedSearchCV3、DecisionTree建模4、RandomForest建模FeatureImpo
- 提升算法 AdaBoost 算法
shenghaishxt
本文来自我的个人博客https://www.zhangshenghai.com/posts/48763/提升算法的基本思路提升算法是从弱学习算法出发,反复学习,得到一系列弱分类器(又称为基本分类器),然后组合这些弱分类器,构成一个强分类器。有两个问题:在每一轮如何改变训练数据的权值或概率分布如何将弱分类器组合成一个强分类器对于第一个问题,AdaBoost的做法是提高那些被前一轮弱分类器错误分类样本
- 时序预测 | MATLAB实现基于CNN-BiLSTM-AdaBoost卷积双向长短期记忆网络结合AdaBoost时间序列预测
机器学习之心
时序预测CNN-BiLSTM-AdaCNN-BiLSTMAdaBoost卷积双向长短期记忆网络时间序列预测集成学习
时序预测|MATLAB实现基于CNN-BiLSTM-AdaBoost卷积双向长短期记忆网络结合AdaBoost时间序列预测目录时序预测|MATLAB实现基于CNN-BiLSTM-AdaBoost卷积双向长短期记忆网络结合AdaBoost时间序列预测预测效果基本介绍模型描述程序设计参考资料预测效果基本介绍1.Matlab实现CNN-BiLSTM-Adaboost时间序列预测,卷积双向长短期记忆神经网
- 分类预测 | Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别
机器学习之心
分类预测SCN-Adaboost随机配置网络模型数据分类预测故障识别
分类预测|Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别目录分类预测|Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别分类效果基本描述程序设计参考资料分类效果基本描述1.Matlab实现SCN-Adaboost随机配置网络模型SCN的Adaboost数据分类预测/故障识别。2.自带数据,多
- 机器学习_集成学习之Stacking/Blending(以预测结果作为新特征)
you_are_my_sunshine*
机器学习机器学习集成学习人工智能
文章目录Stacking算法Blending算法集成学习的确强大,从普通的决策树、树的聚合,到随机森林,再到各种Boosting算法,很长见识。然而这些大多是基于同一种机器学习算法的集成,而且基本都是在集成决策树。我的问题是,能不能集成不同类型的机器学习算法,比如随机森林、神经网络、逻辑回归、AdaBoost等,然后优中选优,以进一步提升性能。集成学习分为两大类同质集成,就是基模型都是通过一个基础
- 机器学习_集成学习之Boosting(提升较弱的模型,以降低弱模型的偏差)
you_are_my_sunshine*
机器学习机器学习集成学习boosting
文章目录介绍AdaBoost算法梯度提升算法(GBDT)极端梯度提升(XGBoost)Bagging算法与Boosting算法的不同之处介绍Boosting的意思就是提升,这是一种通过训练弱学习模型的“肌肉”将其提升为强学习模型的算法。要想在机器学习竞赛中追求卓越,Boosting是一种必需的存在。这是一个属于“高手”的技术,我们当然也应该掌握。Boosting的基本思路是逐步优化模型。这与Bag
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =