Marriage Match IV



Problem Description
Do not sincere non-interference。
Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.


So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?
 

Input
The first line is an integer T indicating the case number.(1<=T<=65)
For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.

Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it's distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads from a to b, they are different.

At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
There may be some blank line between each case.
 

Output
Output a line with a integer, means the chances starvae can get at most.
 

Sample Input

    
    
    
    
3
7 8
1 2 1
1 3 1
2 4 1
3 4 1
4 5 1
4 6 1
5 7 1
6 7 1
1 7

6 7
1 2 1
2 3 1
1 3 3
3 4 1
3 5 1
4 6 1
5 6 1
1 6

2 2
1 2 1
1 2 2
1 2
 

Sample Output

    
    
    
    
2
1
1
题意:给出点跟边,点之间存在重边,有个人想从起点到终点。
求:从起点在保证最短路值的条件下有多少条弱独立轨(即边只能经过一次,但点能通过多次)能到终点。
分析:题意从起点到终点,问多少条弱独立轨,显然就是最大流。
点之间允许重边,那权值小的边肯定能制造出更短的路径,于是对每两点间,只需要保存权值最小的边,但最小的边也有重边,所以可以每两个点间的最小边数。那这两个点就可以被经过的次数就是最小边数了。
接下来就是确定哪些边是在最短路上的边了。这个要求建两次图,题意中给出了起点s跟终点t。一次是按原图,计算所有点到s的最短路dis1;另一次是将图反过来,计算所有点到t的最短路dis2;接下来对某个边(a,b).如果dis1[a] + dis2[b] + w(a,b) == dis1[t];则表示这个条边在最短路上。将所有这些在最短路上的边建成一个图,容量是每两个点间的最少边数。最大流即为答案。
代码:
#include  < stdio.h >   
#include 
< string .h >  
#include 
< queue >  
#include 
< algorithm >
#include 
< iostream >
#define  Min(a, b) (a) < (b) ? a : b  
#define  Max(a, b) (a) > (b) ? a : b
using    namespace  std;  
const    int  MAXN  =   2005 ;  
const    int  MAXM  =   210000 ;  
const    int  INF  =   1100000000 ;  
struct   Edge  
{  
    
int   st, ed;  
    
int   next;  
    
int   flow; 
    
int  cap; 
}edge[MAXM]; 
int   head[MAXN], level[MAXN], que[MAXN], E;
void   add( int  u,  int  v,  int  w)  
{  
    edge[E].flow 
=   0 ;  
    edge[E].cap 
=  w;
    edge[E].st 
=  u;  
    edge[E].ed 
=  v;  
    edge[E].next 
=  head[u];  
    head[u] 
=  E ++ ;      
    edge[E].flow 
=   0
    edge[E].cap 
=   0
    edge[E].st 
=  v;  
    edge[E].ed 
=  u;  
    edge[E].next 
=  head[v];  
    head[v] 
=  E ++ ;  
}
int   dinic_bfs( int  src,  int  dest,  int  ver)        
{        
    
int  i, j;         
    
for  (i  =   0 ; i  <=  ver; i ++ )
    {    
        level[i] 
=   - 1 ;
    }
    
int  rear  =   1 ;        
    que[
0 =  src; level[src]  =   0 ;        
    
for (i  =   0 ; i  <  rear; i ++
    {        
          
for (j  =  head[que[i]]; j  !=   - 1 ; j  =  edge[j].next)
         {        
            
if (level[edge[j].ed]  ==   - 1   &&  edge[j].cap  >  edge[j].flow)        
            {        
              level[edge[j].ed] 
=  level[que[i]] + 1 ;        
              que[rear
++ =  edge[j].ed;        
            }
         }
    }
    
return   level[dest]  >=   0 ;        
}        
     
int  dinic_dfs( int  src,  int  dest,  int  ver)        
{        
    
int  stk[MAXN], top  =   0 ;        
    
int  ret  =   0 , cur, ptr, pre[MAXN], minf, i;        
    
int  del[MAXN];        
    
for  (i  =   0 ; i  <=  ver; i ++
    {
        del[i] 
=   0 ;
    }
    stk[top
++ =  src;         
    pre[src] 
=  src; 
    cur 
=  src;        
    
while (top)        
    {        
        
while (cur  !=  dest  &&  top)        
        {        
            
for (i  =  head[cur]; i  !=   - 1 ; i  =  edge[i].next)        
            {        
                
if (level[edge[i].ed]  ==  level[cur]  +   1   &&  edge[i].cap  >  edge[i].flow   &&   ! del[edge[i].ed])        
                {        
                    stk[top
++ =  edge[i].ed;      
                    cur 
=  edge[i].ed;        
                    pre[edge[i].ed] 
=  i;                       
                    
break ;     
                }        
            }     
            
if (i  ==   - 1 )       
            {        
                del[cur] 
=   1 ;        
                top
-- ;        
                
if (top) cur  =  stk[top - 1 ];        
            }        
        }                
        
if (cur  ==  dest)        
        {       
            minf 
=  INF;        
            
while (cur  !=  src)        
            {        
                cur 
=  pre[cur];        
                
if (edge[cur].cap  -  edge[cur].flow  <  minf) minf  =  edge[cur].cap  -  edge[cur].flow;        
                cur 
=  edge[cur].st;        
            }
            cur 
=  dest;        
            
while (cur  !=  src)        
            {        
                cur 
=  pre[cur];        
                edge[cur].flow 
+=  minf;        
                edge[cur
^ 1 ].flow  -=  minf;        
                
if (edge[cur].cap  -  edge[cur].flow  ==   0 )
                {
                     ptr 
=  edge[cur].st;
                }
                cur 
=  edge[cur].st;        
            }        
            
while (top  >   0 &&  stk[top - 1 !=  ptr) top -- ;        
            
if (top)  cur  =  stk[top - 1 ];        
            ret 
+=  minf;      
        }        
    }        
    
return  ret;        
}        
int  Dinic( int  src,  int  dest,  int  ver)        
{        
    
int   ret  =   0 , t;        
    
while (dinic_bfs(src, dest, ver))        
    {        
        t 
=  dinic_dfs(src, dest, ver);        
        
if (t) ret  +=  t;        
        
else    break ;        
    }        
    
return  ret;        
}
// 下面是求最短路用到的数据结构。 
struct  T
{
    
int  v, w, next;
}fn[MAXM];
int  th, g[MAXN], dis1[MAXN], dis2[MAXN], pre[MAXN], visit[MAXN];
int  map[MAXN][MAXN], cat[MAXN][MAXN];
void  insert( int  u,  int  v,  int  w)
{
    fn[th].v 
=  v, fn[th].w  =  w, fn[th].next  =  g[u], g[u]  =  th ++ ;
}
void  spfa( int  s,  int  t,  int  n,  int   *  dis,  int  sign)
{
    
int  i, j, u, v;
    th 
=   0 ;
    
for  (i  =   0 ; i  <=  n; i ++ )
    {
        g[i] 
=   - 1 ;
    }
    
for  (i  =   1 ; i  <=  n; i ++ )
    {
        
for  (j  =   1 ; j  <=  n; j ++ )
        {
            
if  (map[i][j]  <  INF)
            {
                
if  (sign)
                {
                    insert(i, j, map[i][j]);
                }
                
else
                {
                    insert(j, i, map[i][j]);
                }
            }
        }
    }
    
for  (i  =   0 ; i  <=  n; i ++ )
    {
        visit[i] 
=   0 ;
        dis[i] 
=  INF;
    }
    queue
< int >  que;
    dis[s] 
=   0 , visit[s]  =   1 ;
    que.push(s);
    
while  ( ! que.empty())
    {
        u 
=  que.front();
        que.pop();
        visit[u] 
=   0 ;
        
for  (i  =  g[u]; i  !=   - 1 ; i  =  fn[i].next)
        {
            v 
=  fn[i].v;
            
if  (dis[v]  >  dis[u]  +  fn[i].w)
            {
                dis[v] 
=  dis[u]  +  fn[i].w;
                
if  ( ! visit[v])
                {
                    que.push(v);
                    visit[v] 
=   1 ;
                }
            }
        }
    }
}
void  build ( int  s,  int  t,  int  n)
{
    
int  i, j, v;
    E 
=   0 ;
    
for  (i  =   0 ; i  <=  n  +   10 ; i ++ )
    {
        head[i] 
=   - 1 ;
    }
    
for  (i  =   1 ; i  <=  n; i ++ )
    {
        
for  (j  =  g[i]; j  !=   - 1 ; j  =  fn[j].next)
        {
            v 
=  fn[j].v;
            
if  (dis1[i]  +  dis2[v]  +  fn[j].w  ==  dis1[t]) // 对所有边满足最短路上的边建图。 
            {
                add(i, v, cat[i][v]);
            }
        }
    }
     
int  ans  =  Dinic(s, t, n  +   10 );
     printf(
" %d\n " , ans);
}
int  main()
{
    
int  t, n, m, ver, i, j, u, v, w;
    scanf(
" %d " & t);
    
while  (t -- )
    {
        scanf(
" %d%d " & n,  & m);
        
for  (i  =   1 ; i  <=  n; i ++ )
        {
            
for  (j  =   1 ; j  <=  n; j ++ )
            {
                map[i][j] 
=  INF;
                cat[i][j] 
=   0 ;
            }
        }

        
while  (m -- )
        {
            scanf(
" %d%d%d " & u,  & v,  & w);
            
if  (u  !=  v)
            {
                
if  (map[u][v]  >  w)
                {
                    map[u][v] 
=  w;
                    cat[u][v] 
=   1 ;
                }
                
else   if  (map[u][v]  ==  w)
                {
                    cat[u][v]
++ ; // 边容量++ 
                }
            }
        }
        
int  s, t, flow;
        scanf(
" %d%d " & s,  & t);
        spfa(t, s, n, dis2, 
0 );
        spfa(s, t, n, dis1, 
1 );
        build(s, t, n);
    }
    
return   0 ;
}
/*
2 2
1 2 1
1 2 2
1 2

2 1
1 2 1
1 2


3 2
1 2 1
2 3 4

*/