Marriage Match IV
Problem Description
Do not sincere non-interference。
Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.
So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?
Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.
So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?
Input
The first line is an integer T indicating the case number.(1<=T<=65)
For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.
Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it's distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads from a to b, they are different.
At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
There may be some blank line between each case.
For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.
Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it's distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads from a to b, they are different.
At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
There may be some blank line between each case.
Output
Output a line with a integer, means the chances starvae can get at most.
Sample Input
3
7 8
1 2 1
1 3 1
2 4 1
3 4 1
4 5 1
4 6 1
5 7 1
6 7 1
1 7
6 7
1 2 1
2 3 1
1 3 3
3 4 1
3 5 1
4 6 1
5 6 1
1 6
2 2
1 2 1
1 2 2
1 2
Sample Output
2
1
1
求:从起点在保证最短路值的条件下有多少条弱独立轨(即边只能经过一次,但点能通过多次)能到终点。
分析:题意从起点到终点,问多少条弱独立轨,显然就是最大流。
点之间允许重边,那权值小的边肯定能制造出更短的路径,于是对每两点间,只需要保存权值最小的边,但最小的边也有重边,所以可以每两个点间的最小边数。那这两个点就可以被经过的次数就是最小边数了。
接下来就是确定哪些边是在最短路上的边了。这个要求建两次图,题意中给出了起点s跟终点t。一次是按原图,计算所有点到s的最短路dis1;另一次是将图反过来,计算所有点到t的最短路dis2;接下来对某个边(a,b).如果dis1[a] + dis2[b] + w(a,b) == dis1[t];则表示这个条边在最短路上。将所有这些在最短路上的边建成一个图,容量是每两个点间的最少边数。最大流即为答案。
代码:
#include
<
stdio.h
>
#include < string .h >
#include < queue >
#include < algorithm >
#include < iostream >
#define Min(a, b) (a) < (b) ? a : b
#define Max(a, b) (a) > (b) ? a : b
using namespace std;
const int MAXN = 2005 ;
const int MAXM = 210000 ;
const int INF = 1100000000 ;
struct Edge
{
int st, ed;
int next;
int flow;
int cap;
}edge[MAXM];
int head[MAXN], level[MAXN], que[MAXN], E;
void add( int u, int v, int w)
{
edge[E].flow = 0 ;
edge[E].cap = w;
edge[E].st = u;
edge[E].ed = v;
edge[E].next = head[u];
head[u] = E ++ ;
edge[E].flow = 0 ;
edge[E].cap = 0 ;
edge[E].st = v;
edge[E].ed = u;
edge[E].next = head[v];
head[v] = E ++ ;
}
int dinic_bfs( int src, int dest, int ver)
{
int i, j;
for (i = 0 ; i <= ver; i ++ )
{
level[i] = - 1 ;
}
int rear = 1 ;
que[ 0 ] = src; level[src] = 0 ;
for (i = 0 ; i < rear; i ++ )
{
for (j = head[que[i]]; j != - 1 ; j = edge[j].next)
{
if (level[edge[j].ed] == - 1 && edge[j].cap > edge[j].flow)
{
level[edge[j].ed] = level[que[i]] + 1 ;
que[rear ++ ] = edge[j].ed;
}
}
}
return level[dest] >= 0 ;
}
int dinic_dfs( int src, int dest, int ver)
{
int stk[MAXN], top = 0 ;
int ret = 0 , cur, ptr, pre[MAXN], minf, i;
int del[MAXN];
for (i = 0 ; i <= ver; i ++ )
{
del[i] = 0 ;
}
stk[top ++ ] = src;
pre[src] = src;
cur = src;
while (top)
{
while (cur != dest && top)
{
for (i = head[cur]; i != - 1 ; i = edge[i].next)
{
if (level[edge[i].ed] == level[cur] + 1 && edge[i].cap > edge[i].flow && ! del[edge[i].ed])
{
stk[top ++ ] = edge[i].ed;
cur = edge[i].ed;
pre[edge[i].ed] = i;
break ;
}
}
if (i == - 1 )
{
del[cur] = 1 ;
top -- ;
if (top) cur = stk[top - 1 ];
}
}
if (cur == dest)
{
minf = INF;
while (cur != src)
{
cur = pre[cur];
if (edge[cur].cap - edge[cur].flow < minf) minf = edge[cur].cap - edge[cur].flow;
cur = edge[cur].st;
}
cur = dest;
while (cur != src)
{
cur = pre[cur];
edge[cur].flow += minf;
edge[cur ^ 1 ].flow -= minf;
if (edge[cur].cap - edge[cur].flow == 0 )
{
ptr = edge[cur].st;
}
cur = edge[cur].st;
}
while (top > 0 && stk[top - 1 ] != ptr) top -- ;
if (top) cur = stk[top - 1 ];
ret += minf;
}
}
return ret;
}
int Dinic( int src, int dest, int ver)
{
int ret = 0 , t;
while (dinic_bfs(src, dest, ver))
{
t = dinic_dfs(src, dest, ver);
if (t) ret += t;
else break ;
}
return ret;
}
// 下面是求最短路用到的数据结构。
struct T
{
int v, w, next;
}fn[MAXM];
int th, g[MAXN], dis1[MAXN], dis2[MAXN], pre[MAXN], visit[MAXN];
int map[MAXN][MAXN], cat[MAXN][MAXN];
void insert( int u, int v, int w)
{
fn[th].v = v, fn[th].w = w, fn[th].next = g[u], g[u] = th ++ ;
}
void spfa( int s, int t, int n, int * dis, int sign)
{
int i, j, u, v;
th = 0 ;
for (i = 0 ; i <= n; i ++ )
{
g[i] = - 1 ;
}
for (i = 1 ; i <= n; i ++ )
{
for (j = 1 ; j <= n; j ++ )
{
if (map[i][j] < INF)
{
if (sign)
{
insert(i, j, map[i][j]);
}
else
{
insert(j, i, map[i][j]);
}
}
}
}
for (i = 0 ; i <= n; i ++ )
{
visit[i] = 0 ;
dis[i] = INF;
}
queue < int > que;
dis[s] = 0 , visit[s] = 1 ;
que.push(s);
while ( ! que.empty())
{
u = que.front();
que.pop();
visit[u] = 0 ;
for (i = g[u]; i != - 1 ; i = fn[i].next)
{
v = fn[i].v;
if (dis[v] > dis[u] + fn[i].w)
{
dis[v] = dis[u] + fn[i].w;
if ( ! visit[v])
{
que.push(v);
visit[v] = 1 ;
}
}
}
}
}
void build ( int s, int t, int n)
{
int i, j, v;
E = 0 ;
for (i = 0 ; i <= n + 10 ; i ++ )
{
head[i] = - 1 ;
}
for (i = 1 ; i <= n; i ++ )
{
for (j = g[i]; j != - 1 ; j = fn[j].next)
{
v = fn[j].v;
if (dis1[i] + dis2[v] + fn[j].w == dis1[t]) // 对所有边满足最短路上的边建图。
{
add(i, v, cat[i][v]);
}
}
}
int ans = Dinic(s, t, n + 10 );
printf( " %d\n " , ans);
}
int main()
{
int t, n, m, ver, i, j, u, v, w;
scanf( " %d " , & t);
while (t -- )
{
scanf( " %d%d " , & n, & m);
for (i = 1 ; i <= n; i ++ )
{
for (j = 1 ; j <= n; j ++ )
{
map[i][j] = INF;
cat[i][j] = 0 ;
}
}
while (m -- )
{
scanf( " %d%d%d " , & u, & v, & w);
if (u != v)
{
if (map[u][v] > w)
{
map[u][v] = w;
cat[u][v] = 1 ;
}
else if (map[u][v] == w)
{
cat[u][v] ++ ; // 边容量++
}
}
}
int s, t, flow;
scanf( " %d%d " , & s, & t);
spfa(t, s, n, dis2, 0 );
spfa(s, t, n, dis1, 1 );
build(s, t, n);
}
return 0 ;
}
/*
2 2
1 2 1
1 2 2
1 2
2 1
1 2 1
1 2
3 2
1 2 1
2 3 4
*/
#include < string .h >
#include < queue >
#include < algorithm >
#include < iostream >
#define Min(a, b) (a) < (b) ? a : b
#define Max(a, b) (a) > (b) ? a : b
using namespace std;
const int MAXN = 2005 ;
const int MAXM = 210000 ;
const int INF = 1100000000 ;
struct Edge
{
int st, ed;
int next;
int flow;
int cap;
}edge[MAXM];
int head[MAXN], level[MAXN], que[MAXN], E;
void add( int u, int v, int w)
{
edge[E].flow = 0 ;
edge[E].cap = w;
edge[E].st = u;
edge[E].ed = v;
edge[E].next = head[u];
head[u] = E ++ ;
edge[E].flow = 0 ;
edge[E].cap = 0 ;
edge[E].st = v;
edge[E].ed = u;
edge[E].next = head[v];
head[v] = E ++ ;
}
int dinic_bfs( int src, int dest, int ver)
{
int i, j;
for (i = 0 ; i <= ver; i ++ )
{
level[i] = - 1 ;
}
int rear = 1 ;
que[ 0 ] = src; level[src] = 0 ;
for (i = 0 ; i < rear; i ++ )
{
for (j = head[que[i]]; j != - 1 ; j = edge[j].next)
{
if (level[edge[j].ed] == - 1 && edge[j].cap > edge[j].flow)
{
level[edge[j].ed] = level[que[i]] + 1 ;
que[rear ++ ] = edge[j].ed;
}
}
}
return level[dest] >= 0 ;
}
int dinic_dfs( int src, int dest, int ver)
{
int stk[MAXN], top = 0 ;
int ret = 0 , cur, ptr, pre[MAXN], minf, i;
int del[MAXN];
for (i = 0 ; i <= ver; i ++ )
{
del[i] = 0 ;
}
stk[top ++ ] = src;
pre[src] = src;
cur = src;
while (top)
{
while (cur != dest && top)
{
for (i = head[cur]; i != - 1 ; i = edge[i].next)
{
if (level[edge[i].ed] == level[cur] + 1 && edge[i].cap > edge[i].flow && ! del[edge[i].ed])
{
stk[top ++ ] = edge[i].ed;
cur = edge[i].ed;
pre[edge[i].ed] = i;
break ;
}
}
if (i == - 1 )
{
del[cur] = 1 ;
top -- ;
if (top) cur = stk[top - 1 ];
}
}
if (cur == dest)
{
minf = INF;
while (cur != src)
{
cur = pre[cur];
if (edge[cur].cap - edge[cur].flow < minf) minf = edge[cur].cap - edge[cur].flow;
cur = edge[cur].st;
}
cur = dest;
while (cur != src)
{
cur = pre[cur];
edge[cur].flow += minf;
edge[cur ^ 1 ].flow -= minf;
if (edge[cur].cap - edge[cur].flow == 0 )
{
ptr = edge[cur].st;
}
cur = edge[cur].st;
}
while (top > 0 && stk[top - 1 ] != ptr) top -- ;
if (top) cur = stk[top - 1 ];
ret += minf;
}
}
return ret;
}
int Dinic( int src, int dest, int ver)
{
int ret = 0 , t;
while (dinic_bfs(src, dest, ver))
{
t = dinic_dfs(src, dest, ver);
if (t) ret += t;
else break ;
}
return ret;
}
// 下面是求最短路用到的数据结构。
struct T
{
int v, w, next;
}fn[MAXM];
int th, g[MAXN], dis1[MAXN], dis2[MAXN], pre[MAXN], visit[MAXN];
int map[MAXN][MAXN], cat[MAXN][MAXN];
void insert( int u, int v, int w)
{
fn[th].v = v, fn[th].w = w, fn[th].next = g[u], g[u] = th ++ ;
}
void spfa( int s, int t, int n, int * dis, int sign)
{
int i, j, u, v;
th = 0 ;
for (i = 0 ; i <= n; i ++ )
{
g[i] = - 1 ;
}
for (i = 1 ; i <= n; i ++ )
{
for (j = 1 ; j <= n; j ++ )
{
if (map[i][j] < INF)
{
if (sign)
{
insert(i, j, map[i][j]);
}
else
{
insert(j, i, map[i][j]);
}
}
}
}
for (i = 0 ; i <= n; i ++ )
{
visit[i] = 0 ;
dis[i] = INF;
}
queue < int > que;
dis[s] = 0 , visit[s] = 1 ;
que.push(s);
while ( ! que.empty())
{
u = que.front();
que.pop();
visit[u] = 0 ;
for (i = g[u]; i != - 1 ; i = fn[i].next)
{
v = fn[i].v;
if (dis[v] > dis[u] + fn[i].w)
{
dis[v] = dis[u] + fn[i].w;
if ( ! visit[v])
{
que.push(v);
visit[v] = 1 ;
}
}
}
}
}
void build ( int s, int t, int n)
{
int i, j, v;
E = 0 ;
for (i = 0 ; i <= n + 10 ; i ++ )
{
head[i] = - 1 ;
}
for (i = 1 ; i <= n; i ++ )
{
for (j = g[i]; j != - 1 ; j = fn[j].next)
{
v = fn[j].v;
if (dis1[i] + dis2[v] + fn[j].w == dis1[t]) // 对所有边满足最短路上的边建图。
{
add(i, v, cat[i][v]);
}
}
}
int ans = Dinic(s, t, n + 10 );
printf( " %d\n " , ans);
}
int main()
{
int t, n, m, ver, i, j, u, v, w;
scanf( " %d " , & t);
while (t -- )
{
scanf( " %d%d " , & n, & m);
for (i = 1 ; i <= n; i ++ )
{
for (j = 1 ; j <= n; j ++ )
{
map[i][j] = INF;
cat[i][j] = 0 ;
}
}
while (m -- )
{
scanf( " %d%d%d " , & u, & v, & w);
if (u != v)
{
if (map[u][v] > w)
{
map[u][v] = w;
cat[u][v] = 1 ;
}
else if (map[u][v] == w)
{
cat[u][v] ++ ; // 边容量++
}
}
}
int s, t, flow;
scanf( " %d%d " , & s, & t);
spfa(t, s, n, dis2, 0 );
spfa(s, t, n, dis1, 1 );
build(s, t, n);
}
return 0 ;
}
/*
2 2
1 2 1
1 2 2
1 2
2 1
1 2 1
1 2
3 2
1 2 1
2 3 4
*/