- XGBoost算法的相关知识
VariableX
机器学习基础算法机器学习
文章目录背景定义损失函数(1)原始目标函数Obj(2)原始目标函数Obj的泰勒展开(3)具体化目标函数的泰勒展开细节(4)求解目标函数中的wjw_jwj最优切分点算法基于分桶的划分策略正则化模型复杂度Shrinkage特征采样和样本采样EarlyStopping缺失值处理优缺点总结背景讲XGBoost之前,先引入一个实际问题,即预测一家人每个人玩游戏的意愿值:如果我们用XGBoost解决这个问题,
- Leetcode32 最长有效括号深度解析
八股文领域大手子
数据库mysqljavasqlredis
问题描述找出字符串s中最长的有效括号子串的长度。核心思路动态规划:定义dp[i]为以字符s[i]结尾的最长有效括号子串长度。分情况讨论:根据当前字符是否为)以及前面的字符情况,推导状态转移方程。状态转移方程详解Case1:当前字符)与前一个字符(直接匹配场景:形如...()的结构。转移方程:if(s.charAt(i-1)=='('){dp[i]=dp[i-2]+2;//前i-2个字符的有效长度+
- OSPO Summit 2025 正式定档!议题征集同步开启
开源
历经二十余年的发展,OSPO已然成为企业数字化转型的战略枢纽、产学研协同创新的关键桥梁、公共领域开放生态建设的核心引擎。作为这一进程的重要见证者和推动者,OSPOSummit也将在2025年6月12日迎来它的第三次进化。会议信息时间:2025年6月12日地点:北京议题征集,期待你的声音现在,我们面向全球开源社区决策者、企业技术管理者、学术机构研究者及一线开发者,发起议题征集!诚邀您分享OSPO如何
- P1328 [NOIP 2014 提高组] 生活大爆炸版石头剪刀布
让我上个超影吧
算法算法
题目背景NOIP2014提高组D1T1题目描述石头剪刀布是常见的猜拳游戏:石头胜剪刀,剪刀胜布,布胜石头。如果两个人出拳一样,则不分胜负。在《生活大爆炸》第二季第8集中出现了一种石头剪刀布的升级版游戏。升级版游戏在传统的石头剪刀布游戏的基础上,增加了两个新手势:斯波克:《星际迷航》主角之一。蜥蜴人:《星际迷航》中的反面角色。这五种手势的胜负关系如表一所示,表中列出的是甲对乙的游戏结果。现在,小A和
- 7-3 一元多项式求导 分数 20
超级翼小子
算法
作者DS课程组设计函数求一元多项式的导数。单位浙江大学输入格式:以指数递降方式输入多项式非零项系数和指数(绝对值均为不超过1000的整数)。数字间以空格分隔。注意:零多项式用00表示。输出格式:以与输入相同的格式输出导数多项式非零项的系数和指数。数字间以空格分隔,但结尾不能有多余空格。输入样例:34-5261-20输出样例:123-10160代码长度限制16KB时间限制400ms内存限制64MB栈
- MATLAB算法实战应用案例精讲-【深度学习】归一化
林聪木
matlab算法深度学习
目录为什么要做特征归一化/标准化?常用featurescaling方法计算方式上对比分析featurescaling需要还是不需要什么时候需要featurescaling?什么时候不需要FeatureScaling?归一化基础知识点1.什么是归一化2.为什么要归一化3.为什么归一化能提高求解最优解的速度4.归一化有哪些类型5.不同归一化的使用条件6.归一化和标准化的联系与区别层归一化综述提出背景概
- 气候变化和人类活动对中国植被固碳的贡献量化数据(2001-2018)
树谷-胡老师
资源arcgis
气候变化和人类活动对中国植被固碳的贡献量化数据(2001-2018)数据分享:气候变化和人类活动对中国植被固碳的贡献量化数据(2001-2018)该数据集包括中国2001~2018年月尺度或年尺度的地表短波波段反照率、植被光合有效辐射吸收比、叶面积指数、森林覆盖度和非森林植被覆盖度、地表温度、地表净辐射、地表蒸散发、地上部分自养呼吸、地下部分自养呼吸、总初级生产力和净初级生产力。空间分辨率为0.1
- LINUX下的tcp协议
Ccc030.
linuxtcp/ip运维
TCP1.面向数据流(流式套接字)2.建立连接3.安全可靠的传输协议应用场景:HTTP,MQTT,FTP三次握手:TCP建立连接时,需要进行三次握手,确保收发数据前,双方都已准备就绪。四次挥手:TCP断开连接时,需要进行四次挥手,从而确保通信双发都已收发数据结束。C/S模型:ssize_trecv(intsockfd,void*buf,size_tlen,intflags);功能:从tcp套接字接
- 模型可解释性:基于因果推理的反事实生成与决策可视化
燃灯工作室
Ai人工智能数学建模学习机器学习
1.技术原理与数学公式1.1因果推理基础结构方程模型(SEM):X=fX(PaX,UX)X=f_X(Pa_X,U_X)X=fX(PaX,UX)其中PaXPa_XPaX为父节点集合,UXU_XUX为外生变量反事实定义:YX=x(u)=Ydo(X=x)(u)Y_{X=x}(u)=Y_{do(X=x)}(u)YX=x(u)=Ydo(X=x)(u)表示在相同背景条件uuu下,强制变量XXX取xxx时的结果
- 小白零基础学数学建模系列-Day1-数学建模入门介绍与案例实践
川川菜鸟
数学建模小白到精通系列数学建模
目录一、数学建模的定义和重要性1.1什么是数学建模?1.2数学建模的重要性二、常见的数学建模方法概述2.1线性模型和案例2.1.1特点2.1.2应用2.1.3问题2.1.4模型2.1.5数学表达式2.1.6求解算法2.2非线性模型和案例2.2.1特点2.2.2应用2.2.3问题2.2.4模型2.2.5数学表达式2.2.6算法2.3动态模型2.3.1特点2.3.2应用2.3.3常见问题2.3.4模型
- TCP建立连接的三次握手过程
枫凯
网络协议javatcp三次握手
TCP是因特网中的传输层协议,使用三次握手协议建立连接,下面是TCP建立连接的全过程。上图画出了TCP建立连接的过程。假定主机A运行的是TCP客户程序,B运行的是TCP服务器程序。最初两端的TCP进程都处于CLOSED状态。图中在主机下面的是TCP进程所处的状态。A是主动打开连接,B是被动打开连接。B的TCP服务器进程先创建传输控制模块TCB,准备接受客户进程的连接请求,然后服务器进程就处于LIS
- 详解TCP三次握手(建立连接)和四次握手(释放连接)
dvlinker
网络编程与网络问题分享C/C++实战专栏tcp/ip网络协议TCP连接三次握手四次挥手
VC++常用功能开发汇总(专栏文章列表,欢迎订阅,持续更新...)https://blog.csdn.net/chenlycly/article/details/124272585<
- TCP 采用三次握手建立连接的原因
27xixi
java高频tcp/ip网络
TCP采用三次握手建立连接的根本原因是为了解决网络通信中的两个核心问题:可靠性和历史连接的消除。两次握手无法满足这些需求,而四次握手虽然理论上可行,但会引入冗余和效率问题。以下是详细分析:一、两次握手的问题如果只用两次握手(客户端发送SYN,服务端回复SYN-ACK后直接建立连接),会引发以下问题:无法防止历史连接的干扰场景:客户端发送了一个旧的SYN报文(例如网络延迟导致的重传),服务端收到后回
- 机器学习中的梯度到底是什么?(chat-gpt问答)
湫怿
机器学习gpt人工智能梯度
1、梯度是对损失函数求导吗?是的,梯度是对损失函数(或目标函数)求导数值化后的结果。梯度告诉我们目标函数在某个点上的方向性和变化率,这些信息是优化算法推进参数评估和更新的重要指标。在机器学习中,我们通过不断调整参数,使目标函数达到最小值,从而实现模型的训练和学习。2、为什么梯度要求偏导来求解?梯度是一个向量,它的方向指向函数值增加最快的方向,其大小表示函数值的变化率。为了确定梯度的方向和大小,需要
- 强化学习-Chapter2-贝尔曼方程
Rsbs
算法机器学习概率论
强化学习-Chapter2-贝尔曼方程贝尔曼方程推导继续展开贝尔曼方程的矩阵形式状态值的求解动作价值函数与状态价值函数的关系贝尔曼方程推导Vπ(s)=E[Gt∣St=s]=E[rt+1+(γrt+2+…)∣St=s]=E[rt+1+γGt+1∣St=s]=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(Rs→s′a+γE[Gt+1∣St+1=s′])=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(R
- dp背包问题
|CXHAO|
c++
有NN件物品和一个容量是VV的背包。每件物品只能使用一次。第ii件物品的体积是vivi,价值是wiwi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。接下来有NN行,每行两个整数vi,wivi,wi,用空格隔开,分别表示第ii件物品的体积和价值。输出格式输出一个整数,表示最大价值
- 第13章贪心算法
厨 神
贪心算法算法
贪心算法局部最优求得总体最优适用于桌上有6张纸币,面额为10010050505010,问怎么能拿走3张纸币,总面额最大?—拿单位价值最高的只关注局部最优----关注拿一张的最大值拆解-----拿三次最大的纸币不适用于桌面三件物品,每个物品都有重量和价值,wv695733承重为8,求不超过背包承重情况下最大价值只能选一件,能不能得到最大值----选69还剩下二,能选第二件吗?不能选所以不适用,因为不
- 数学建模之数学模型-3:动态规划
^ω^宇博
数学模型数学建模动态规划算法
文章目录动态规划基本概念阶段状态决策策略状态转移方程指标函数最优指标函数动态规划的求解前向算法后向算法二者比较应用案例一种中文分词的动态规划模型摘要引言动态规划的分词模型问题的数学描述消除状态的后效性选择优化条件算法描述和计算实例算法的效率分析和评价结束语参考文献动态规划基本概念一个多阶段决策过程最优化问题的动态规划模型包括以下666个要素:以下是对动态规划中阶段、状态、决策、策略、状态转移方程、
- 贪心算法在背包问题上的运用(Python)
MATLAB卡尔曼
智能算法的MATLAB实现贪心算法python算法
背包问题有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?这就是典型的背包问题(又称为0-1背包问题),也是具体的、没有经过任何延伸的背包问题模型。背包问题的传统求解方法较为复杂,现定义有一个可以载重为8kg的背包,另外还有4个物品,物品的价值和质量数据如下表,不考虑背包的容量。4个物品的总质量大于8kg,所以要想在有限载重的背包携带更多质量的物品,
- 每天一道算法题【蓝桥杯】【下降路径最小和】
桦0
题解算法蓝桥杯c++leetcode
思路使用dp表来解决问题为了方便填写dp表,多初始化一圈格子状态转移方程dp[i][j]=min(dp[i-1][j-1],min(dp[i-1][j],dp[i-1][j+1]))+matrix[i-1][j-1];每个元素等于上一行元素最小的那个加上本格元素最后遍历最后一行dp表找最小值for(intj=1;jusingnamespacestd;classSolution{public:int
- 输入URL到页面展示的核心逻辑链
賢843
软件测试理论基础python
浏览器输入url到页面展示过程(https请求过程)DNS解析域名得到服务器ip地址TCP三次握手TCP三次握手-CSDN博客客户端发送http请求服务器响应请求客户端渲染页面TCP四次挥手两个核心概念FIN包:FIN=1,表示请求终止连接(相当于说“我要挂电话了!”)。ACK包:ACK=1,表示确认收到数据(相当于说“我收到了!”)。四次挥手流程第一次挥手:客户端发送FIN=1的包给
- 笔试刷题专题(一)
英雄不问出处~
动态规划贪心字符串栈用字符串模拟栈
文章目录最小花费爬楼梯(动态规划)题解代码数组中两个字符串的最小距离(贪心(dp))题解代码点击消除题解代码最小花费爬楼梯(动态规划)题目链接题解1.状态表示:以i位置为结尾的最小花费2.状态转移方程:dp[i]=min(dp[i-1]+cost[i-1,dp[i-2]+cost[i-2])可以从i-1位置和i-2到达i位置注意dp[i]表示的是i位置之前的最小花费,还要加上该点的位置才是到达这个
- [论文解读] 多机器人系统动态任务分配综述
「已注销」
算法
https://www.emerald.com/insight/content/doi/10.1108/IR-04-2020-0073/full/html多机器人/多智能体动态环境任务分配决策动态任务调度策略该文章主要是想对目前stateoftheart多机器人动态任务调度策略做一个全面的评价,注意定语挺多的,里面的方法也较多为近几年的智能调度那些算法。衡量方法主要考虑到了应用场景、限制、目标方程
- 【动态规划】任务分配问题
精神小猿
动态规划
题目来自贵大OJ题目描述:给定n个零件需要的加工时间,分配到两台机床上加工,使得两台机床完成加工的时间尽可能同步。设计一个穷举搜索算法求解该问题。例如,有3个零件,加工时间分别为2、5和3,那么把加工时间为2、3的两个零件分配到一台机床上加工,把加工时间为5的零件分配到另一台机床上加工,两台机床能同时完工。输入描述:每组数据的第一行是一个整数n(1#includeusingnamespacestd
- PCL 点云OBB包围盒(二)
大鱼BIGFISH
点云进阶C++PCL点云OBB包围盒
文章目录一、简介二、实现步骤二、实现代码三、实现效果参考资料一、简介包围盒是一种求解离散点集最优包围空间的算法,基本思想是用体积稍大且特性简单的几何体(称为包围盒)来近似地代替复杂的几何对象。(来源于百度)常用的求解包围盒的算法主要有AABB和OOB算法,但AABB算法容易受到物体朝向的影响,产生较大的空隙,因此本文将以OOB算法思想实现最小包围盒的求取。包围盒的应用有很多,如机械上的碰撞测试、物
- PINN物理信息网络 | 基于物理信息神经网络PINN求解Burger方程
算法如诗
物理信息网络(PINN)神经网络人工智能深度学习物理信息网络
基于物理信息神经网络(PINN)求解Burger方程的研究背景源于对非线性偏微分方程(PDE)求解方法的不断探索和改进。传统的数值方法,如有限差分法和有限元法,通常需要进行网格离散化和迭代求解,对于复杂的非线性问题计算成本较高。因此,研究人员开始探索基于机器学习和神经网络的新方法来求解PDEs。神经网络在近年来取得了显著的发展,能够通过学习大量数据来建立输入和输出之间的复杂映射关系。然而,将神经网
- PINN物理信息网络 | 利用物理信息神经网络进行流体动力学建模
算法如诗
物理信息网络(PINN)神经网络机器学习人工智能流体动力学建模PINN物理信息网络
背景物理信息神经网络(Physics-InformedNeuralNetworks,PINN)是一种结合了神经网络和物理方程的方法,用于建模和求解物理问题。传统的基于物理方程的数值方法在处理复杂的非线性偏微分方程时可能面临数值稳定性、高计算复杂度和网格依赖性等问题。而PINN作为一种数据驱动的方法,通过使用神经网络来近似物理方程,能够有效地解决这些问题。在流体动力学建模中,PINN可以应用于求解N
- Deepseek:物理神经网络PINN入门教程
天一生水water
神经网络人工智能深度学习
一、物理信息网络(PINN)的概念与原理1.定义与来源物理信息网络(Physics-InformedNeuralNetworks,PINN)是一种将物理定律(如偏微分方程、守恒定律等)嵌入神经网络训练过程的深度学习方法。其核心思想是通过神经网络同时拟合观测数据并满足物理约束,从而解决传统数值方法难以处理的高维、噪声数据或复杂边界条件问题。来源:PINN起源于对传统数值方法局限性的改进需求(如网格生
- P1010 [NOIP 1998 普及组] 幂次方
黄昏岭
算法java
题目描述任何一个正整数都可以用2的幂次方表示。例如137=27+23+20。同时约定次方用括号来表示,即ab可表示为a(b)。由此可知,137可表示为2(7)+2(3)+2(0)进一步:7=22+2+20(21用2表示),并且3=2+20。所以最后137可表示为2(2(2)+2+2(0))+2(2+2(0))+2(0)。又如1315=210+28+25+2+1所以1315最后可表示为2(2(2+2
- 2024年最佳Todo清单APP:从效率到协作全覆盖
任务管理工具todolist
大量研究表明,人类大脑并不擅长同时处理多项任务。在多任务处理时,大脑需要频繁切换注意力,每次切换都会消耗时间和精力,这种现象被称为“切换成本”(SwitchingCost)。心理学家Rubinstein、Meyer和Evans在2001年的研究中指出,任务切换会导致思维停顿,延长完成任务的时间。他们发现,在处理复杂任务时,效率可能下降高达40%。此外,Cowen(2001)的研究进一步指出,人类的
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文