转载:http://dreamchinazyy.blog.163.com/blog/static/4046322020090810178233/
国内外对Hough变换的研究及应用动态
Hough变换的实质是将图像空间内具有一定关系的像元进行聚类,寻找能把这些像元用某一解析形式联系起来的参数空间累积对应点。在参数空间不超过二维的情况下, 这种变换有着理想的效果。但是,一旦参数空间增大,计算量便会急剧上升,同时耗费巨大的存储空间,耗时也随之猛增。就此,多年来国内外众多学者针对具体情况对常规Hough变换进行了多方面的探索,并提出了许多有价值的改进方法。
Hough变换的基本原理在于利用点与线的对偶性,将原始图像空间的给定的曲线通过曲线表达形式变为参数空间的一个点。这样就把原始图像中给定曲线的检测问题转化为寻找参数空间中的峰值问题。也即把检测整体特性转化为检测局部特性。比如直线、椭圆、圆、弧线等。
设已知一黑白图像上画了一条直线,要求出这条直线所在的位置。我们知道,直线的方程可以用y=k*x+b 来表示,其中k和b是参数,分别是斜率和截距。过某一点(x0,y0)的所有直线的参数都会满足方程y0=kx0+b。即点(x0,y0)确定了一族直线。方程y0=kx0+b在参数k--b平面上是一条直线,(你也可以是方程b=-x0*k+y0对应的直线)。这样,图像x--y平面上的一个前景像素点就对应到参数平面上的一条直线。我们举个例子说明解决前面那个问题的原理。设图像上的直线是y=x, 我们先取上面的三个点:A(0,0), B(1,1), C(22)。可以求出,过A点的直线的参数要满足方程b=0, 过B点的直线的参数要满足方程1=k+b, 过C点的直线的参数要满足方程2=2k+b, 这三个方程就对应着参数平面上的三条直线,而这三条直线会相交于一点(k=1,b=0)。 同理,原图像上直线y=x上的其它点(如(3,3),(4,4)等) 对应参数平面上的直线也会通过点(k=1,b=0)。这个性质就为我们解决问题提供了方法,就是把图像平面上的点对应到参数平面上的线,最后通过统计特性来解决问题。假如图像平面上有两条直线,那么最终在参数平面上就会看到两个峰值点,依此类推。
在实际应用中,y=k*x+b形式的直线方程没有办法表示x=c形式的直线(这时候,直线的斜率为无穷大)。所以实际应用中,是采用参数方程p=x*cos(theta)+y*sin(theta)。这样,图像平面上的一个点就对应到参数p---theta平面上的一条曲线上,其它的还是一样。
1、已知半径的圆
2、未知半径的圆
3、椭圆
四、总结
图像空间中的在同一个圆,直线,椭圆上的点,每一个点都对应了参数空间中的一个图形,在图像空间中这些点都满足它们的方程这一个条件,所以这些点,每个投影后得到的图像都会经过这个参数空间中的点。也就是在参数空间中它们会相交于一点。所以,当参数空间中的这个相交点的越大的话,那么说明元图像空间中满足这个参数的图形越饱满。越象我们要检测的东西。
<p margin:="" 0cm="" 0pt"="" style="line-height: 28px; margin-top: 0px; margin-bottom: 10px; padding-top: 0px; padding-bottom: 0px; color: rgb(148, 111, 52); font-family: 'Hiragino Sans GB W3', 'Hiragino Sans GB', Arial, Helvetica, simsun, u5b8bu4f53; font-size: 16px; background-color: rgb(255, 240, 209);"> Hough变换能够查找任意的曲线,只要你给定它的方程。Hough变换在检验已知形状的目标方面具有受曲线间断影响小和不受图形旋转的影响的优点,即使目标有稍许缺损或污染也能被正确识别。
Hough变换中参数空间的峰值检测是一个聚类检测问题,阈值的选取是成功与否的关键所在。其中,一种方法是对图像空间进行加权,以改变参数空间的峰值分布;一种方法是直接对参数空间进行极大值的搜索。