/* * Copyright (c) 1996, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ /** * Sort: a class that uses the quicksort algorithm to sort an * array of objects. * * @author Sunita Mani */ package sun.misc; public class Sort { private static void swap(Object arr[], int i, int j) { Object tmp; tmp = arr[i]; arr[i] = arr[j]; arr[j] = tmp; } /** * quicksort the array of objects. * * @param arr[] - an array of objects * @param left - the start index - from where to begin sorting * @param right - the last index. * @param comp - an object that implemnts the Compare interface to resolve thecomparison. */ public static void quicksort(Object arr[], int left, int right, Compare comp) { int i, last; if (left >= right) { /* do nothing if array contains fewer than two */ return; /* two elements */ } swap(arr, left, (left+right) / 2); last = left; for (i = left+1; i <= right; i++) { if (comp.doCompare(arr[i], arr[left]) < 0) { swap(arr, ++last, i); } } swap(arr, left, last); quicksort(arr, left, last-1, comp); quicksort(arr, last+1, right, comp); } public static void quicksort(Object arr[], Compare comp) { quicksort(arr, 0, arr.length-1, comp); } }
java中还有一个版本
在JDK7 中新增了java.util.DualPivotQuicksort这个类,里面实现于2009年发表的Dual-Pivot Quicksort 算法。其主要的设计是改进了Quicksort算法。使之效率大幅提高。为些Collections.sort(),Arrays.sort()等的实现部分(现在主要是原始类型数据,其它类型应当在测试开发中,根据其注释将来会改)使用了这个类。通过对比JDK7与JDK5的Arrays类发现JDK7中做了非常大的改变。
采用多路快速排序法,比单路快速排序法有更好的性能。
/* * Copyright (c) 2009, 2011, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.util; /** * This class implements the Dual-Pivot Quicksort algorithm by * Vladimir Yaroslavskiy, Jon Bentley, and Josh Bloch. The algorithm * offers O(n log(n)) performance on many data sets that cause other * quicksorts to degrade to quadratic performance, and is typically * faster than traditional (one-pivot) Quicksort implementations. * * @author Vladimir Yaroslavskiy * @author Jon Bentley * @author Josh Bloch * * @version 2011.02.11 m765.827.12i:5\7pm * @since 1.7 */ final class DualPivotQuicksort { /** * Prevents instantiation. */ private DualPivotQuicksort() {} /* * Tuning parameters. */ /** * The maximum number of runs in merge sort. */ private static final int MAX_RUN_COUNT = 67; /** * The maximum length of run in merge sort. */ private static final int MAX_RUN_LENGTH = 33; /** * If the length of an array to be sorted is less than this * constant, Quicksort is used in preference to merge sort. */ private static final int QUICKSORT_THRESHOLD = 286; /** * If the length of an array to be sorted is less than this * constant, insertion sort is used in preference to Quicksort. */ private static final int INSERTION_SORT_THRESHOLD = 47; /** * If the length of a byte array to be sorted is greater than this * constant, counting sort is used in preference to insertion sort. */ private static final int COUNTING_SORT_THRESHOLD_FOR_BYTE = 29; /** * If the length of a short or char array to be sorted is greater * than this constant, counting sort is used in preference to Quicksort. */ private static final int COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR = 3200; /* * Sorting methods for seven primitive types. */ /** * Sorts the specified array. * * @param a the array to be sorted */ public static void sort(int[] a) { sort(a, 0, a.length - 1); } /** * Sorts the specified range of the array. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ public static void sort(int[] a, int left, int right) { // Use Quicksort on small arrays if (right - left < QUICKSORT_THRESHOLD) { sort(a, left, right, true); return; } /* * Index run[i] is the start of i-th run * (ascending or descending sequence). */ int[] run = new int[MAX_RUN_COUNT + 1]; int count = 0; run[0] = left; // Check if the array is nearly sorted for (int k = left; k < right; run[count] = k) { if (a[k] < a[k + 1]) { // ascending while (++k <= right && a[k - 1] <= a[k]); } else if (a[k] > a[k + 1]) { // descending while (++k <= right && a[k - 1] >= a[k]); for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { int t = a[lo]; a[lo] = a[hi]; a[hi] = t; } } else { // equal for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) { if (--m == 0) { sort(a, left, right, true); return; } } } /* * The array is not highly structured, * use Quicksort instead of merge sort. */ if (++count == MAX_RUN_COUNT) { sort(a, left, right, true); return; } } // Check special cases if (run[count] == right++) { // The last run contains one element run[++count] = right; } else if (count == 1) { // The array is already sorted return; } /* * Create temporary array, which is used for merging. * Implementation note: variable "right" is increased by 1. */ int[] b; byte odd = 0; for (int n = 1; (n <<= 1) < count; odd ^= 1); if (odd == 0) { b = a; a = new int[b.length]; for (int i = left - 1; ++i < right; a[i] = b[i]); } else { b = new int[a.length]; } // Merging for (int last; count > 1; count = last) { for (int k = (last = 0) + 2; k <= count; k += 2) { int hi = run[k], mi = run[k - 1]; for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { if (q >= hi || p < mi && a[p] <= a[q]) { b[i] = a[p++]; } else { b[i] = a[q++]; } } run[++last] = hi; } if ((count & 1) != 0) { for (int i = right, lo = run[count - 1]; --i >= lo; b[i] = a[i] ); run[++last] = right; } int[] t = a; a = b; b = t; } } /** * Sorts the specified range of the array by Dual-Pivot Quicksort. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted * @param leftmost indicates if this part is the leftmost in the range */ private static void sort(int[] a, int left, int right, boolean leftmost) { int length = right - left + 1; // Use insertion sort on tiny arrays if (length < INSERTION_SORT_THRESHOLD) { if (leftmost) { /* * Traditional (without sentinel) insertion sort, * optimized for server VM, is used in case of * the leftmost part. */ for (int i = left, j = i; i < right; j = ++i) { int ai = a[i + 1]; while (ai < a[j]) { a[j + 1] = a[j]; if (j-- == left) { break; } } a[j + 1] = ai; } } else { /* * Skip the longest ascending sequence. */ do { if (left >= right) { return; } } while (a[++left] >= a[left - 1]); /* * Every element from adjoining part plays the role * of sentinel, therefore this allows us to avoid the * left range check on each iteration. Moreover, we use * the more optimized algorithm, so called pair insertion * sort, which is faster (in the context of Quicksort) * than traditional implementation of insertion sort. */ for (int k = left; ++left <= right; k = ++left) { int a1 = a[k], a2 = a[left]; if (a1 < a2) { a2 = a1; a1 = a[left]; } while (a1 < a[--k]) { a[k + 2] = a[k]; } a[++k + 1] = a1; while (a2 < a[--k]) { a[k + 1] = a[k]; } a[k + 1] = a2; } int last = a[right]; while (last < a[--right]) { a[right + 1] = a[right]; } a[right + 1] = last; } return; } // Inexpensive approximation of length / 7 int seventh = (length >> 3) + (length >> 6) + 1; /* * Sort five evenly spaced elements around (and including) the * center element in the range. These elements will be used for * pivot selection as described below. The choice for spacing * these elements was empirically determined to work well on * a wide variety of inputs. */ int e3 = (left + right) >>> 1; // The midpoint int e2 = e3 - seventh; int e1 = e2 - seventh; int e4 = e3 + seventh; int e5 = e4 + seventh; // Sort these elements using insertion sort if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; } if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t; if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } } // Pointers int less = left; // The index of the first element of center part int great = right; // The index before the first element of right part if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. */ int pivot1 = a[e2]; int pivot2 = a[e4]; /* * The first and the last elements to be sorted are moved to the * locations formerly occupied by the pivots. When partitioning * is complete, the pivots are swapped back into their final * positions, and excluded from subsequent sorting. */ a[e2] = a[left]; a[e4] = a[right]; /* * Skip elements, which are less or greater than pivot values. */ while (a[++less] < pivot1); while (a[--great] > pivot2); /* * Partitioning: * * left part center part right part * +--------------------------------------------------------------+ * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | * +--------------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { int ak = a[k]; if (ak < pivot1) { // Move a[k] to left part a[k] = a[less]; /* * Here and below we use "a[i] = b; i++;" instead * of "a[i++] = b;" due to performance issue. */ a[less] = ak; ++less; } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { if (great-- == k) { break outer; } } if (a[great] < pivot1) { // a[great] <= pivot2 a[k] = a[less]; a[less] = a[great]; ++less; } else { // pivot1 <= a[great] <= pivot2 a[k] = a[great]; } /* * Here and below we use "a[i] = b; i--;" instead * of "a[i--] = b;" due to performance issue. */ a[great] = ak; --great; } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivots sort(a, left, less - 2, leftmost); sort(a, great + 2, right, false); /* * If center part is too large (comprises > 4/7 of the array), * swap internal pivot values to ends. */ if (less < e1 && e5 < great) { /* * Skip elements, which are equal to pivot values. */ while (a[less] == pivot1) { ++less; } while (a[great] == pivot2) { --great; } /* * Partitioning: * * left part center part right part * +----------------------------------------------------------+ * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | * +----------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (*, less) == pivot1 * pivot1 < all in [less, k) < pivot2 * all in (great, *) == pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { int ak = a[k]; if (ak == pivot1) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else if (ak == pivot2) { // Move a[k] to right part while (a[great] == pivot2) { if (great-- == k) { break outer; } } if (a[great] == pivot1) { // a[great] < pivot2 a[k] = a[less]; /* * Even though a[great] equals to pivot1, the * assignment a[less] = pivot1 may be incorrect, * if a[great] and pivot1 are floating-point zeros * of different signs. Therefore in float and * double sorting methods we have to use more * accurate assignment a[less] = a[great]. */ a[less] = pivot1; ++less; } else { // pivot1 < a[great] < pivot2 a[k] = a[great]; } a[great] = ak; --great; } } } // Sort center part recursively sort(a, less, great, false); } else { // Partitioning with one pivot /* * Use the third of the five sorted elements as pivot. * This value is inexpensive approximation of the median. */ int pivot = a[e3]; /* * Partitioning degenerates to the traditional 3-way * (or "Dutch National Flag") schema: * * left part center part right part * +-------------------------------------------------+ * | < pivot | == pivot | ? | > pivot | * +-------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part. */ for (int k = less; k <= great; ++k) { if (a[k] == pivot) { continue; } int ak = a[k]; if (ak < pivot) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else { // a[k] > pivot - Move a[k] to right part while (a[great] > pivot) { --great; } if (a[great] < pivot) { // a[great] <= pivot a[k] = a[less]; a[less] = a[great]; ++less; } else { // a[great] == pivot /* * Even though a[great] equals to pivot, the * assignment a[k] = pivot may be incorrect, * if a[great] and pivot are floating-point * zeros of different signs. Therefore in float * and double sorting methods we have to use * more accurate assignment a[k] = a[great]. */ a[k] = pivot; } a[great] = ak; --great; } } /* * Sort left and right parts recursively. * All elements from center part are equal * and, therefore, already sorted. */ sort(a, left, less - 1, leftmost); sort(a, great + 1, right, false); } } /** * Sorts the specified array. * * @param a the array to be sorted */ public static void sort(long[] a) { sort(a, 0, a.length - 1); } /** * Sorts the specified range of the array. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ public static void sort(long[] a, int left, int right) { // Use Quicksort on small arrays if (right - left < QUICKSORT_THRESHOLD) { sort(a, left, right, true); return; } /* * Index run[i] is the start of i-th run * (ascending or descending sequence). */ int[] run = new int[MAX_RUN_COUNT + 1]; int count = 0; run[0] = left; // Check if the array is nearly sorted for (int k = left; k < right; run[count] = k) { if (a[k] < a[k + 1]) { // ascending while (++k <= right && a[k - 1] <= a[k]); } else if (a[k] > a[k + 1]) { // descending while (++k <= right && a[k - 1] >= a[k]); for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { long t = a[lo]; a[lo] = a[hi]; a[hi] = t; } } else { // equal for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) { if (--m == 0) { sort(a, left, right, true); return; } } } /* * The array is not highly structured, * use Quicksort instead of merge sort. */ if (++count == MAX_RUN_COUNT) { sort(a, left, right, true); return; } } // Check special cases if (run[count] == right++) { // The last run contains one element run[++count] = right; } else if (count == 1) { // The array is already sorted return; } /* * Create temporary array, which is used for merging. * Implementation note: variable "right" is increased by 1. */ long[] b; byte odd = 0; for (int n = 1; (n <<= 1) < count; odd ^= 1); if (odd == 0) { b = a; a = new long[b.length]; for (int i = left - 1; ++i < right; a[i] = b[i]); } else { b = new long[a.length]; } // Merging for (int last; count > 1; count = last) { for (int k = (last = 0) + 2; k <= count; k += 2) { int hi = run[k], mi = run[k - 1]; for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { if (q >= hi || p < mi && a[p] <= a[q]) { b[i] = a[p++]; } else { b[i] = a[q++]; } } run[++last] = hi; } if ((count & 1) != 0) { for (int i = right, lo = run[count - 1]; --i >= lo; b[i] = a[i] ); run[++last] = right; } long[] t = a; a = b; b = t; } } /** * Sorts the specified range of the array by Dual-Pivot Quicksort. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted * @param leftmost indicates if this part is the leftmost in the range */ private static void sort(long[] a, int left, int right, boolean leftmost) { int length = right - left + 1; // Use insertion sort on tiny arrays if (length < INSERTION_SORT_THRESHOLD) { if (leftmost) { /* * Traditional (without sentinel) insertion sort, * optimized for server VM, is used in case of * the leftmost part. */ for (int i = left, j = i; i < right; j = ++i) { long ai = a[i + 1]; while (ai < a[j]) { a[j + 1] = a[j]; if (j-- == left) { break; } } a[j + 1] = ai; } } else { /* * Skip the longest ascending sequence. */ do { if (left >= right) { return; } } while (a[++left] >= a[left - 1]); /* * Every element from adjoining part plays the role * of sentinel, therefore this allows us to avoid the * left range check on each iteration. Moreover, we use * the more optimized algorithm, so called pair insertion * sort, which is faster (in the context of Quicksort) * than traditional implementation of insertion sort. */ for (int k = left; ++left <= right; k = ++left) { long a1 = a[k], a2 = a[left]; if (a1 < a2) { a2 = a1; a1 = a[left]; } while (a1 < a[--k]) { a[k + 2] = a[k]; } a[++k + 1] = a1; while (a2 < a[--k]) { a[k + 1] = a[k]; } a[k + 1] = a2; } long last = a[right]; while (last < a[--right]) { a[right + 1] = a[right]; } a[right + 1] = last; } return; } // Inexpensive approximation of length / 7 int seventh = (length >> 3) + (length >> 6) + 1; /* * Sort five evenly spaced elements around (and including) the * center element in the range. These elements will be used for * pivot selection as described below. The choice for spacing * these elements was empirically determined to work well on * a wide variety of inputs. */ int e3 = (left + right) >>> 1; // The midpoint int e2 = e3 - seventh; int e1 = e2 - seventh; int e4 = e3 + seventh; int e5 = e4 + seventh; // Sort these elements using insertion sort if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; } if (a[e3] < a[e2]) { long t = a[e3]; a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } if (a[e4] < a[e3]) { long t = a[e4]; a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t; if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } } // Pointers int less = left; // The index of the first element of center part int great = right; // The index before the first element of right part if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. */ long pivot1 = a[e2]; long pivot2 = a[e4]; /* * The first and the last elements to be sorted are moved to the * locations formerly occupied by the pivots. When partitioning * is complete, the pivots are swapped back into their final * positions, and excluded from subsequent sorting. */ a[e2] = a[left]; a[e4] = a[right]; /* * Skip elements, which are less or greater than pivot values. */ while (a[++less] < pivot1); while (a[--great] > pivot2); /* * Partitioning: * * left part center part right part * +--------------------------------------------------------------+ * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | * +--------------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { long ak = a[k]; if (ak < pivot1) { // Move a[k] to left part a[k] = a[less]; /* * Here and below we use "a[i] = b; i++;" instead * of "a[i++] = b;" due to performance issue. */ a[less] = ak; ++less; } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { if (great-- == k) { break outer; } } if (a[great] < pivot1) { // a[great] <= pivot2 a[k] = a[less]; a[less] = a[great]; ++less; } else { // pivot1 <= a[great] <= pivot2 a[k] = a[great]; } /* * Here and below we use "a[i] = b; i--;" instead * of "a[i--] = b;" due to performance issue. */ a[great] = ak; --great; } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivots sort(a, left, less - 2, leftmost); sort(a, great + 2, right, false); /* * If center part is too large (comprises > 4/7 of the array), * swap internal pivot values to ends. */ if (less < e1 && e5 < great) { /* * Skip elements, which are equal to pivot values. */ while (a[less] == pivot1) { ++less; } while (a[great] == pivot2) { --great; } /* * Partitioning: * * left part center part right part * +----------------------------------------------------------+ * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | * +----------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (*, less) == pivot1 * pivot1 < all in [less, k) < pivot2 * all in (great, *) == pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { long ak = a[k]; if (ak == pivot1) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else if (ak == pivot2) { // Move a[k] to right part while (a[great] == pivot2) { if (great-- == k) { break outer; } } if (a[great] == pivot1) { // a[great] < pivot2 a[k] = a[less]; /* * Even though a[great] equals to pivot1, the * assignment a[less] = pivot1 may be incorrect, * if a[great] and pivot1 are floating-point zeros * of different signs. Therefore in float and * double sorting methods we have to use more * accurate assignment a[less] = a[great]. */ a[less] = pivot1; ++less; } else { // pivot1 < a[great] < pivot2 a[k] = a[great]; } a[great] = ak; --great; } } } // Sort center part recursively sort(a, less, great, false); } else { // Partitioning with one pivot /* * Use the third of the five sorted elements as pivot. * This value is inexpensive approximation of the median. */ long pivot = a[e3]; /* * Partitioning degenerates to the traditional 3-way * (or "Dutch National Flag") schema: * * left part center part right part * +-------------------------------------------------+ * | < pivot | == pivot | ? | > pivot | * +-------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part. */ for (int k = less; k <= great; ++k) { if (a[k] == pivot) { continue; } long ak = a[k]; if (ak < pivot) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else { // a[k] > pivot - Move a[k] to right part while (a[great] > pivot) { --great; } if (a[great] < pivot) { // a[great] <= pivot a[k] = a[less]; a[less] = a[great]; ++less; } else { // a[great] == pivot /* * Even though a[great] equals to pivot, the * assignment a[k] = pivot may be incorrect, * if a[great] and pivot are floating-point * zeros of different signs. Therefore in float * and double sorting methods we have to use * more accurate assignment a[k] = a[great]. */ a[k] = pivot; } a[great] = ak; --great; } } /* * Sort left and right parts recursively. * All elements from center part are equal * and, therefore, already sorted. */ sort(a, left, less - 1, leftmost); sort(a, great + 1, right, false); } } /** * Sorts the specified array. * * @param a the array to be sorted */ public static void sort(short[] a) { sort(a, 0, a.length - 1); } /** * Sorts the specified range of the array. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ public static void sort(short[] a, int left, int right) { // Use counting sort on large arrays if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) { int[] count = new int[NUM_SHORT_VALUES]; for (int i = left - 1; ++i <= right; count[a[i] - Short.MIN_VALUE]++ ); for (int i = NUM_SHORT_VALUES, k = right + 1; k > left; ) { while (count[--i] == 0); short value = (short) (i + Short.MIN_VALUE); int s = count[i]; do { a[--k] = value; } while (--s > 0); } } else { // Use Dual-Pivot Quicksort on small arrays doSort(a, left, right); } } /** The number of distinct short values. */ private static final int NUM_SHORT_VALUES = 1 << 16; /** * Sorts the specified range of the array. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void doSort(short[] a, int left, int right) { // Use Quicksort on small arrays if (right - left < QUICKSORT_THRESHOLD) { sort(a, left, right, true); return; } /* * Index run[i] is the start of i-th run * (ascending or descending sequence). */ int[] run = new int[MAX_RUN_COUNT + 1]; int count = 0; run[0] = left; // Check if the array is nearly sorted for (int k = left; k < right; run[count] = k) { if (a[k] < a[k + 1]) { // ascending while (++k <= right && a[k - 1] <= a[k]); } else if (a[k] > a[k + 1]) { // descending while (++k <= right && a[k - 1] >= a[k]); for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { short t = a[lo]; a[lo] = a[hi]; a[hi] = t; } } else { // equal for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) { if (--m == 0) { sort(a, left, right, true); return; } } } /* * The array is not highly structured, * use Quicksort instead of merge sort. */ if (++count == MAX_RUN_COUNT) { sort(a, left, right, true); return; } } // Check special cases if (run[count] == right++) { // The last run contains one element run[++count] = right; } else if (count == 1) { // The array is already sorted return; } /* * Create temporary array, which is used for merging. * Implementation note: variable "right" is increased by 1. */ short[] b; byte odd = 0; for (int n = 1; (n <<= 1) < count; odd ^= 1); if (odd == 0) { b = a; a = new short[b.length]; for (int i = left - 1; ++i < right; a[i] = b[i]); } else { b = new short[a.length]; } // Merging for (int last; count > 1; count = last) { for (int k = (last = 0) + 2; k <= count; k += 2) { int hi = run[k], mi = run[k - 1]; for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { if (q >= hi || p < mi && a[p] <= a[q]) { b[i] = a[p++]; } else { b[i] = a[q++]; } } run[++last] = hi; } if ((count & 1) != 0) { for (int i = right, lo = run[count - 1]; --i >= lo; b[i] = a[i] ); run[++last] = right; } short[] t = a; a = b; b = t; } } /** * Sorts the specified range of the array by Dual-Pivot Quicksort. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted * @param leftmost indicates if this part is the leftmost in the range */ private static void sort(short[] a, int left, int right, boolean leftmost) { int length = right - left + 1; // Use insertion sort on tiny arrays if (length < INSERTION_SORT_THRESHOLD) { if (leftmost) { /* * Traditional (without sentinel) insertion sort, * optimized for server VM, is used in case of * the leftmost part. */ for (int i = left, j = i; i < right; j = ++i) { short ai = a[i + 1]; while (ai < a[j]) { a[j + 1] = a[j]; if (j-- == left) { break; } } a[j + 1] = ai; } } else { /* * Skip the longest ascending sequence. */ do { if (left >= right) { return; } } while (a[++left] >= a[left - 1]); /* * Every element from adjoining part plays the role * of sentinel, therefore this allows us to avoid the * left range check on each iteration. Moreover, we use * the more optimized algorithm, so called pair insertion * sort, which is faster (in the context of Quicksort) * than traditional implementation of insertion sort. */ for (int k = left; ++left <= right; k = ++left) { short a1 = a[k], a2 = a[left]; if (a1 < a2) { a2 = a1; a1 = a[left]; } while (a1 < a[--k]) { a[k + 2] = a[k]; } a[++k + 1] = a1; while (a2 < a[--k]) { a[k + 1] = a[k]; } a[k + 1] = a2; } short last = a[right]; while (last < a[--right]) { a[right + 1] = a[right]; } a[right + 1] = last; } return; } // Inexpensive approximation of length / 7 int seventh = (length >> 3) + (length >> 6) + 1; /* * Sort five evenly spaced elements around (and including) the * center element in the range. These elements will be used for * pivot selection as described below. The choice for spacing * these elements was empirically determined to work well on * a wide variety of inputs. */ int e3 = (left + right) >>> 1; // The midpoint int e2 = e3 - seventh; int e1 = e2 - seventh; int e4 = e3 + seventh; int e5 = e4 + seventh; // Sort these elements using insertion sort if (a[e2] < a[e1]) { short t = a[e2]; a[e2] = a[e1]; a[e1] = t; } if (a[e3] < a[e2]) { short t = a[e3]; a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } if (a[e4] < a[e3]) { short t = a[e4]; a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } if (a[e5] < a[e4]) { short t = a[e5]; a[e5] = a[e4]; a[e4] = t; if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } } // Pointers int less = left; // The index of the first element of center part int great = right; // The index before the first element of right part if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. */ short pivot1 = a[e2]; short pivot2 = a[e4]; /* * The first and the last elements to be sorted are moved to the * locations formerly occupied by the pivots. When partitioning * is complete, the pivots are swapped back into their final * positions, and excluded from subsequent sorting. */ a[e2] = a[left]; a[e4] = a[right]; /* * Skip elements, which are less or greater than pivot values. */ while (a[++less] < pivot1); while (a[--great] > pivot2); /* * Partitioning: * * left part center part right part * +--------------------------------------------------------------+ * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | * +--------------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { short ak = a[k]; if (ak < pivot1) { // Move a[k] to left part a[k] = a[less]; /* * Here and below we use "a[i] = b; i++;" instead * of "a[i++] = b;" due to performance issue. */ a[less] = ak; ++less; } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { if (great-- == k) { break outer; } } if (a[great] < pivot1) { // a[great] <= pivot2 a[k] = a[less]; a[less] = a[great]; ++less; } else { // pivot1 <= a[great] <= pivot2 a[k] = a[great]; } /* * Here and below we use "a[i] = b; i--;" instead * of "a[i--] = b;" due to performance issue. */ a[great] = ak; --great; } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivots sort(a, left, less - 2, leftmost); sort(a, great + 2, right, false); /* * If center part is too large (comprises > 4/7 of the array), * swap internal pivot values to ends. */ if (less < e1 && e5 < great) { /* * Skip elements, which are equal to pivot values. */ while (a[less] == pivot1) { ++less; } while (a[great] == pivot2) { --great; } /* * Partitioning: * * left part center part right part * +----------------------------------------------------------+ * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | * +----------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (*, less) == pivot1 * pivot1 < all in [less, k) < pivot2 * all in (great, *) == pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { short ak = a[k]; if (ak == pivot1) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else if (ak == pivot2) { // Move a[k] to right part while (a[great] == pivot2) { if (great-- == k) { break outer; } } if (a[great] == pivot1) { // a[great] < pivot2 a[k] = a[less]; /* * Even though a[great] equals to pivot1, the * assignment a[less] = pivot1 may be incorrect, * if a[great] and pivot1 are floating-point zeros * of different signs. Therefore in float and * double sorting methods we have to use more * accurate assignment a[less] = a[great]. */ a[less] = pivot1; ++less; } else { // pivot1 < a[great] < pivot2 a[k] = a[great]; } a[great] = ak; --great; } } } // Sort center part recursively sort(a, less, great, false); } else { // Partitioning with one pivot /* * Use the third of the five sorted elements as pivot. * This value is inexpensive approximation of the median. */ short pivot = a[e3]; /* * Partitioning degenerates to the traditional 3-way * (or "Dutch National Flag") schema: * * left part center part right part * +-------------------------------------------------+ * | < pivot | == pivot | ? | > pivot | * +-------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part. */ for (int k = less; k <= great; ++k) { if (a[k] == pivot) { continue; } short ak = a[k]; if (ak < pivot) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else { // a[k] > pivot - Move a[k] to right part while (a[great] > pivot) { --great; } if (a[great] < pivot) { // a[great] <= pivot a[k] = a[less]; a[less] = a[great]; ++less; } else { // a[great] == pivot /* * Even though a[great] equals to pivot, the * assignment a[k] = pivot may be incorrect, * if a[great] and pivot are floating-point * zeros of different signs. Therefore in float * and double sorting methods we have to use * more accurate assignment a[k] = a[great]. */ a[k] = pivot; } a[great] = ak; --great; } } /* * Sort left and right parts recursively. * All elements from center part are equal * and, therefore, already sorted. */ sort(a, left, less - 1, leftmost); sort(a, great + 1, right, false); } } /** * Sorts the specified array. * * @param a the array to be sorted */ public static void sort(char[] a) { sort(a, 0, a.length - 1); } /** * Sorts the specified range of the array. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ public static void sort(char[] a, int left, int right) { // Use counting sort on large arrays if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) { int[] count = new int[NUM_CHAR_VALUES]; for (int i = left - 1; ++i <= right; count[a[i]]++ ); for (int i = NUM_CHAR_VALUES, k = right + 1; k > left; ) { while (count[--i] == 0); char value = (char) i; int s = count[i]; do { a[--k] = value; } while (--s > 0); } } else { // Use Dual-Pivot Quicksort on small arrays doSort(a, left, right); } } /** The number of distinct char values. */ private static final int NUM_CHAR_VALUES = 1 << 16; /** * Sorts the specified range of the array. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void doSort(char[] a, int left, int right) { // Use Quicksort on small arrays if (right - left < QUICKSORT_THRESHOLD) { sort(a, left, right, true); return; } /* * Index run[i] is the start of i-th run * (ascending or descending sequence). */ int[] run = new int[MAX_RUN_COUNT + 1]; int count = 0; run[0] = left; // Check if the array is nearly sorted for (int k = left; k < right; run[count] = k) { if (a[k] < a[k + 1]) { // ascending while (++k <= right && a[k - 1] <= a[k]); } else if (a[k] > a[k + 1]) { // descending while (++k <= right && a[k - 1] >= a[k]); for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { char t = a[lo]; a[lo] = a[hi]; a[hi] = t; } } else { // equal for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) { if (--m == 0) { sort(a, left, right, true); return; } } } /* * The array is not highly structured, * use Quicksort instead of merge sort. */ if (++count == MAX_RUN_COUNT) { sort(a, left, right, true); return; } } // Check special cases if (run[count] == right++) { // The last run contains one element run[++count] = right; } else if (count == 1) { // The array is already sorted return; } /* * Create temporary array, which is used for merging. * Implementation note: variable "right" is increased by 1. */ char[] b; byte odd = 0; for (int n = 1; (n <<= 1) < count; odd ^= 1); if (odd == 0) { b = a; a = new char[b.length]; for (int i = left - 1; ++i < right; a[i] = b[i]); } else { b = new char[a.length]; } // Merging for (int last; count > 1; count = last) { for (int k = (last = 0) + 2; k <= count; k += 2) { int hi = run[k], mi = run[k - 1]; for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { if (q >= hi || p < mi && a[p] <= a[q]) { b[i] = a[p++]; } else { b[i] = a[q++]; } } run[++last] = hi; } if ((count & 1) != 0) { for (int i = right, lo = run[count - 1]; --i >= lo; b[i] = a[i] ); run[++last] = right; } char[] t = a; a = b; b = t; } } /** * Sorts the specified range of the array by Dual-Pivot Quicksort. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted * @param leftmost indicates if this part is the leftmost in the range */ private static void sort(char[] a, int left, int right, boolean leftmost) { int length = right - left + 1; // Use insertion sort on tiny arrays if (length < INSERTION_SORT_THRESHOLD) { if (leftmost) { /* * Traditional (without sentinel) insertion sort, * optimized for server VM, is used in case of * the leftmost part. */ for (int i = left, j = i; i < right; j = ++i) { char ai = a[i + 1]; while (ai < a[j]) { a[j + 1] = a[j]; if (j-- == left) { break; } } a[j + 1] = ai; } } else { /* * Skip the longest ascending sequence. */ do { if (left >= right) { return; } } while (a[++left] >= a[left - 1]); /* * Every element from adjoining part plays the role * of sentinel, therefore this allows us to avoid the * left range check on each iteration. Moreover, we use * the more optimized algorithm, so called pair insertion * sort, which is faster (in the context of Quicksort) * than traditional implementation of insertion sort. */ for (int k = left; ++left <= right; k = ++left) { char a1 = a[k], a2 = a[left]; if (a1 < a2) { a2 = a1; a1 = a[left]; } while (a1 < a[--k]) { a[k + 2] = a[k]; } a[++k + 1] = a1; while (a2 < a[--k]) { a[k + 1] = a[k]; } a[k + 1] = a2; } char last = a[right]; while (last < a[--right]) { a[right + 1] = a[right]; } a[right + 1] = last; } return; } // Inexpensive approximation of length / 7 int seventh = (length >> 3) + (length >> 6) + 1; /* * Sort five evenly spaced elements around (and including) the * center element in the range. These elements will be used for * pivot selection as described below. The choice for spacing * these elements was empirically determined to work well on * a wide variety of inputs. */ int e3 = (left + right) >>> 1; // The midpoint int e2 = e3 - seventh; int e1 = e2 - seventh; int e4 = e3 + seventh; int e5 = e4 + seventh; // Sort these elements using insertion sort if (a[e2] < a[e1]) { char t = a[e2]; a[e2] = a[e1]; a[e1] = t; } if (a[e3] < a[e2]) { char t = a[e3]; a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } if (a[e4] < a[e3]) { char t = a[e4]; a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } if (a[e5] < a[e4]) { char t = a[e5]; a[e5] = a[e4]; a[e4] = t; if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } } // Pointers int less = left; // The index of the first element of center part int great = right; // The index before the first element of right part if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. */ char pivot1 = a[e2]; char pivot2 = a[e4]; /* * The first and the last elements to be sorted are moved to the * locations formerly occupied by the pivots. When partitioning * is complete, the pivots are swapped back into their final * positions, and excluded from subsequent sorting. */ a[e2] = a[left]; a[e4] = a[right]; /* * Skip elements, which are less or greater than pivot values. */ while (a[++less] < pivot1); while (a[--great] > pivot2); /* * Partitioning: * * left part center part right part * +--------------------------------------------------------------+ * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | * +--------------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { char ak = a[k]; if (ak < pivot1) { // Move a[k] to left part a[k] = a[less]; /* * Here and below we use "a[i] = b; i++;" instead * of "a[i++] = b;" due to performance issue. */ a[less] = ak; ++less; } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { if (great-- == k) { break outer; } } if (a[great] < pivot1) { // a[great] <= pivot2 a[k] = a[less]; a[less] = a[great]; ++less; } else { // pivot1 <= a[great] <= pivot2 a[k] = a[great]; } /* * Here and below we use "a[i] = b; i--;" instead * of "a[i--] = b;" due to performance issue. */ a[great] = ak; --great; } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivots sort(a, left, less - 2, leftmost); sort(a, great + 2, right, false); /* * If center part is too large (comprises > 4/7 of the array), * swap internal pivot values to ends. */ if (less < e1 && e5 < great) { /* * Skip elements, which are equal to pivot values. */ while (a[less] == pivot1) { ++less; } while (a[great] == pivot2) { --great; } /* * Partitioning: * * left part center part right part * +----------------------------------------------------------+ * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | * +----------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (*, less) == pivot1 * pivot1 < all in [less, k) < pivot2 * all in (great, *) == pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { char ak = a[k]; if (ak == pivot1) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else if (ak == pivot2) { // Move a[k] to right part while (a[great] == pivot2) { if (great-- == k) { break outer; } } if (a[great] == pivot1) { // a[great] < pivot2 a[k] = a[less]; /* * Even though a[great] equals to pivot1, the * assignment a[less] = pivot1 may be incorrect, * if a[great] and pivot1 are floating-point zeros * of different signs. Therefore in float and * double sorting methods we have to use more * accurate assignment a[less] = a[great]. */ a[less] = pivot1; ++less; } else { // pivot1 < a[great] < pivot2 a[k] = a[great]; } a[great] = ak; --great; } } } // Sort center part recursively sort(a, less, great, false); } else { // Partitioning with one pivot /* * Use the third of the five sorted elements as pivot. * This value is inexpensive approximation of the median. */ char pivot = a[e3]; /* * Partitioning degenerates to the traditional 3-way * (or "Dutch National Flag") schema: * * left part center part right part * +-------------------------------------------------+ * | < pivot | == pivot | ? | > pivot | * +-------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part. */ for (int k = less; k <= great; ++k) { if (a[k] == pivot) { continue; } char ak = a[k]; if (ak < pivot) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else { // a[k] > pivot - Move a[k] to right part while (a[great] > pivot) { --great; } if (a[great] < pivot) { // a[great] <= pivot a[k] = a[less]; a[less] = a[great]; ++less; } else { // a[great] == pivot /* * Even though a[great] equals to pivot, the * assignment a[k] = pivot may be incorrect, * if a[great] and pivot are floating-point * zeros of different signs. Therefore in float * and double sorting methods we have to use * more accurate assignment a[k] = a[great]. */ a[k] = pivot; } a[great] = ak; --great; } } /* * Sort left and right parts recursively. * All elements from center part are equal * and, therefore, already sorted. */ sort(a, left, less - 1, leftmost); sort(a, great + 1, right, false); } } /** The number of distinct byte values. */ private static final int NUM_BYTE_VALUES = 1 << 8; /** * Sorts the specified array. * * @param a the array to be sorted */ public static void sort(byte[] a) { sort(a, 0, a.length - 1); } /** * Sorts the specified range of the array. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ public static void sort(byte[] a, int left, int right) { // Use counting sort on large arrays if (right - left > COUNTING_SORT_THRESHOLD_FOR_BYTE) { int[] count = new int[NUM_BYTE_VALUES]; for (int i = left - 1; ++i <= right; count[a[i] - Byte.MIN_VALUE]++ ); for (int i = NUM_BYTE_VALUES, k = right + 1; k > left; ) { while (count[--i] == 0); byte value = (byte) (i + Byte.MIN_VALUE); int s = count[i]; do { a[--k] = value; } while (--s > 0); } } else { // Use insertion sort on small arrays for (int i = left, j = i; i < right; j = ++i) { byte ai = a[i + 1]; while (ai < a[j]) { a[j + 1] = a[j]; if (j-- == left) { break; } } a[j + 1] = ai; } } } /** * Sorts the specified array. * * @param a the array to be sorted */ public static void sort(float[] a) { sort(a, 0, a.length - 1); } /** * Sorts the specified range of the array. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ public static void sort(float[] a, int left, int right) { /* * Phase 1: Move NaNs to the end of the array. */ while (left <= right && Float.isNaN(a[right])) { --right; } for (int k = right; --k >= left; ) { float ak = a[k]; if (ak != ak) { // a[k] is NaN a[k] = a[right]; a[right] = ak; --right; } } /* * Phase 2: Sort everything except NaNs (which are already in place). */ doSort(a, left, right); /* * Phase 3: Place negative zeros before positive zeros. */ int hi = right; /* * Find the first zero, or first positive, or last negative element. */ while (left < hi) { int middle = (left + hi) >>> 1; float middleValue = a[middle]; if (middleValue < 0.0f) { left = middle + 1; } else { hi = middle; } } /* * Skip the last negative value (if any) or all leading negative zeros. */ while (left <= right && Float.floatToRawIntBits(a[left]) < 0) { ++left; } /* * Move negative zeros to the beginning of the sub-range. * * Partitioning: * * +----------------------------------------------------+ * | < 0.0 | -0.0 | 0.0 | ? ( >= 0.0 ) | * +----------------------------------------------------+ * ^ ^ ^ * | | | * left p k * * Invariants: * * all in (*, left) < 0.0 * all in [left, p) == -0.0 * all in [p, k) == 0.0 * all in [k, right] >= 0.0 * * Pointer k is the first index of ?-part. */ for (int k = left, p = left - 1; ++k <= right; ) { float ak = a[k]; if (ak != 0.0f) { break; } if (Float.floatToRawIntBits(ak) < 0) { // ak is -0.0f a[k] = 0.0f; a[++p] = -0.0f; } } } /** * Sorts the specified range of the array. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void doSort(float[] a, int left, int right) { // Use Quicksort on small arrays if (right - left < QUICKSORT_THRESHOLD) { sort(a, left, right, true); return; } /* * Index run[i] is the start of i-th run * (ascending or descending sequence). */ int[] run = new int[MAX_RUN_COUNT + 1]; int count = 0; run[0] = left; // Check if the array is nearly sorted for (int k = left; k < right; run[count] = k) { if (a[k] < a[k + 1]) { // ascending while (++k <= right && a[k - 1] <= a[k]); } else if (a[k] > a[k + 1]) { // descending while (++k <= right && a[k - 1] >= a[k]); for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { float t = a[lo]; a[lo] = a[hi]; a[hi] = t; } } else { // equal for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) { if (--m == 0) { sort(a, left, right, true); return; } } } /* * The array is not highly structured, * use Quicksort instead of merge sort. */ if (++count == MAX_RUN_COUNT) { sort(a, left, right, true); return; } } // Check special cases if (run[count] == right++) { // The last run contains one element run[++count] = right; } else if (count == 1) { // The array is already sorted return; } /* * Create temporary array, which is used for merging. * Implementation note: variable "right" is increased by 1. */ float[] b; byte odd = 0; for (int n = 1; (n <<= 1) < count; odd ^= 1); if (odd == 0) { b = a; a = new float[b.length]; for (int i = left - 1; ++i < right; a[i] = b[i]); } else { b = new float[a.length]; } // Merging for (int last; count > 1; count = last) { for (int k = (last = 0) + 2; k <= count; k += 2) { int hi = run[k], mi = run[k - 1]; for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { if (q >= hi || p < mi && a[p] <= a[q]) { b[i] = a[p++]; } else { b[i] = a[q++]; } } run[++last] = hi; } if ((count & 1) != 0) { for (int i = right, lo = run[count - 1]; --i >= lo; b[i] = a[i] ); run[++last] = right; } float[] t = a; a = b; b = t; } } /** * Sorts the specified range of the array by Dual-Pivot Quicksort. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted * @param leftmost indicates if this part is the leftmost in the range */ private static void sort(float[] a, int left, int right, boolean leftmost) { int length = right - left + 1; // Use insertion sort on tiny arrays if (length < INSERTION_SORT_THRESHOLD) { if (leftmost) { /* * Traditional (without sentinel) insertion sort, * optimized for server VM, is used in case of * the leftmost part. */ for (int i = left, j = i; i < right; j = ++i) { float ai = a[i + 1]; while (ai < a[j]) { a[j + 1] = a[j]; if (j-- == left) { break; } } a[j + 1] = ai; } } else { /* * Skip the longest ascending sequence. */ do { if (left >= right) { return; } } while (a[++left] >= a[left - 1]); /* * Every element from adjoining part plays the role * of sentinel, therefore this allows us to avoid the * left range check on each iteration. Moreover, we use * the more optimized algorithm, so called pair insertion * sort, which is faster (in the context of Quicksort) * than traditional implementation of insertion sort. */ for (int k = left; ++left <= right; k = ++left) { float a1 = a[k], a2 = a[left]; if (a1 < a2) { a2 = a1; a1 = a[left]; } while (a1 < a[--k]) { a[k + 2] = a[k]; } a[++k + 1] = a1; while (a2 < a[--k]) { a[k + 1] = a[k]; } a[k + 1] = a2; } float last = a[right]; while (last < a[--right]) { a[right + 1] = a[right]; } a[right + 1] = last; } return; } // Inexpensive approximation of length / 7 int seventh = (length >> 3) + (length >> 6) + 1; /* * Sort five evenly spaced elements around (and including) the * center element in the range. These elements will be used for * pivot selection as described below. The choice for spacing * these elements was empirically determined to work well on * a wide variety of inputs. */ int e3 = (left + right) >>> 1; // The midpoint int e2 = e3 - seventh; int e1 = e2 - seventh; int e4 = e3 + seventh; int e5 = e4 + seventh; // Sort these elements using insertion sort if (a[e2] < a[e1]) { float t = a[e2]; a[e2] = a[e1]; a[e1] = t; } if (a[e3] < a[e2]) { float t = a[e3]; a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } if (a[e4] < a[e3]) { float t = a[e4]; a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } if (a[e5] < a[e4]) { float t = a[e5]; a[e5] = a[e4]; a[e4] = t; if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } } // Pointers int less = left; // The index of the first element of center part int great = right; // The index before the first element of right part if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. */ float pivot1 = a[e2]; float pivot2 = a[e4]; /* * The first and the last elements to be sorted are moved to the * locations formerly occupied by the pivots. When partitioning * is complete, the pivots are swapped back into their final * positions, and excluded from subsequent sorting. */ a[e2] = a[left]; a[e4] = a[right]; /* * Skip elements, which are less or greater than pivot values. */ while (a[++less] < pivot1); while (a[--great] > pivot2); /* * Partitioning: * * left part center part right part * +--------------------------------------------------------------+ * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | * +--------------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { float ak = a[k]; if (ak < pivot1) { // Move a[k] to left part a[k] = a[less]; /* * Here and below we use "a[i] = b; i++;" instead * of "a[i++] = b;" due to performance issue. */ a[less] = ak; ++less; } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { if (great-- == k) { break outer; } } if (a[great] < pivot1) { // a[great] <= pivot2 a[k] = a[less]; a[less] = a[great]; ++less; } else { // pivot1 <= a[great] <= pivot2 a[k] = a[great]; } /* * Here and below we use "a[i] = b; i--;" instead * of "a[i--] = b;" due to performance issue. */ a[great] = ak; --great; } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivots sort(a, left, less - 2, leftmost); sort(a, great + 2, right, false); /* * If center part is too large (comprises > 4/7 of the array), * swap internal pivot values to ends. */ if (less < e1 && e5 < great) { /* * Skip elements, which are equal to pivot values. */ while (a[less] == pivot1) { ++less; } while (a[great] == pivot2) { --great; } /* * Partitioning: * * left part center part right part * +----------------------------------------------------------+ * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | * +----------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (*, less) == pivot1 * pivot1 < all in [less, k) < pivot2 * all in (great, *) == pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { float ak = a[k]; if (ak == pivot1) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else if (ak == pivot2) { // Move a[k] to right part while (a[great] == pivot2) { if (great-- == k) { break outer; } } if (a[great] == pivot1) { // a[great] < pivot2 a[k] = a[less]; /* * Even though a[great] equals to pivot1, the * assignment a[less] = pivot1 may be incorrect, * if a[great] and pivot1 are floating-point zeros * of different signs. Therefore in float and * double sorting methods we have to use more * accurate assignment a[less] = a[great]. */ a[less] = a[great]; ++less; } else { // pivot1 < a[great] < pivot2 a[k] = a[great]; } a[great] = ak; --great; } } } // Sort center part recursively sort(a, less, great, false); } else { // Partitioning with one pivot /* * Use the third of the five sorted elements as pivot. * This value is inexpensive approximation of the median. */ float pivot = a[e3]; /* * Partitioning degenerates to the traditional 3-way * (or "Dutch National Flag") schema: * * left part center part right part * +-------------------------------------------------+ * | < pivot | == pivot | ? | > pivot | * +-------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part. */ for (int k = less; k <= great; ++k) { if (a[k] == pivot) { continue; } float ak = a[k]; if (ak < pivot) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else { // a[k] > pivot - Move a[k] to right part while (a[great] > pivot) { --great; } if (a[great] < pivot) { // a[great] <= pivot a[k] = a[less]; a[less] = a[great]; ++less; } else { // a[great] == pivot /* * Even though a[great] equals to pivot, the * assignment a[k] = pivot may be incorrect, * if a[great] and pivot are floating-point * zeros of different signs. Therefore in float * and double sorting methods we have to use * more accurate assignment a[k] = a[great]. */ a[k] = a[great]; } a[great] = ak; --great; } } /* * Sort left and right parts recursively. * All elements from center part are equal * and, therefore, already sorted. */ sort(a, left, less - 1, leftmost); sort(a, great + 1, right, false); } } /** * Sorts the specified array. * * @param a the array to be sorted */ public static void sort(double[] a) { sort(a, 0, a.length - 1); } /** * Sorts the specified range of the array. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ public static void sort(double[] a, int left, int right) { /* * Phase 1: Move NaNs to the end of the array. */ while (left <= right && Double.isNaN(a[right])) { --right; } for (int k = right; --k >= left; ) { double ak = a[k]; if (ak != ak) { // a[k] is NaN a[k] = a[right]; a[right] = ak; --right; } } /* * Phase 2: Sort everything except NaNs (which are already in place). */ doSort(a, left, right); /* * Phase 3: Place negative zeros before positive zeros. */ int hi = right; /* * Find the first zero, or first positive, or last negative element. */ while (left < hi) { int middle = (left + hi) >>> 1; double middleValue = a[middle]; if (middleValue < 0.0d) { left = middle + 1; } else { hi = middle; } } /* * Skip the last negative value (if any) or all leading negative zeros. */ while (left <= right && Double.doubleToRawLongBits(a[left]) < 0) { ++left; } /* * Move negative zeros to the beginning of the sub-range. * * Partitioning: * * +----------------------------------------------------+ * | < 0.0 | -0.0 | 0.0 | ? ( >= 0.0 ) | * +----------------------------------------------------+ * ^ ^ ^ * | | | * left p k * * Invariants: * * all in (*, left) < 0.0 * all in [left, p) == -0.0 * all in [p, k) == 0.0 * all in [k, right] >= 0.0 * * Pointer k is the first index of ?-part. */ for (int k = left, p = left - 1; ++k <= right; ) { double ak = a[k]; if (ak != 0.0d) { break; } if (Double.doubleToRawLongBits(ak) < 0) { // ak is -0.0d a[k] = 0.0d; a[++p] = -0.0d; } } } /** * Sorts the specified range of the array. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted */ private static void doSort(double[] a, int left, int right) { // Use Quicksort on small arrays if (right - left < QUICKSORT_THRESHOLD) { sort(a, left, right, true); return; } /* * Index run[i] is the start of i-th run * (ascending or descending sequence). */ int[] run = new int[MAX_RUN_COUNT + 1]; int count = 0; run[0] = left; // Check if the array is nearly sorted for (int k = left; k < right; run[count] = k) { if (a[k] < a[k + 1]) { // ascending while (++k <= right && a[k - 1] <= a[k]); } else if (a[k] > a[k + 1]) { // descending while (++k <= right && a[k - 1] >= a[k]); for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { double t = a[lo]; a[lo] = a[hi]; a[hi] = t; } } else { // equal for (int m = MAX_RUN_LENGTH; ++k <= right && a[k - 1] == a[k]; ) { if (--m == 0) { sort(a, left, right, true); return; } } } /* * The array is not highly structured, * use Quicksort instead of merge sort. */ if (++count == MAX_RUN_COUNT) { sort(a, left, right, true); return; } } // Check special cases if (run[count] == right++) { // The last run contains one element run[++count] = right; } else if (count == 1) { // The array is already sorted return; } /* * Create temporary array, which is used for merging. * Implementation note: variable "right" is increased by 1. */ double[] b; byte odd = 0; for (int n = 1; (n <<= 1) < count; odd ^= 1); if (odd == 0) { b = a; a = new double[b.length]; for (int i = left - 1; ++i < right; a[i] = b[i]); } else { b = new double[a.length]; } // Merging for (int last; count > 1; count = last) { for (int k = (last = 0) + 2; k <= count; k += 2) { int hi = run[k], mi = run[k - 1]; for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { if (q >= hi || p < mi && a[p] <= a[q]) { b[i] = a[p++]; } else { b[i] = a[q++]; } } run[++last] = hi; } if ((count & 1) != 0) { for (int i = right, lo = run[count - 1]; --i >= lo; b[i] = a[i] ); run[++last] = right; } double[] t = a; a = b; b = t; } } /** * Sorts the specified range of the array by Dual-Pivot Quicksort. * * @param a the array to be sorted * @param left the index of the first element, inclusive, to be sorted * @param right the index of the last element, inclusive, to be sorted * @param leftmost indicates if this part is the leftmost in the range */ private static void sort(double[] a, int left, int right, boolean leftmost) { int length = right - left + 1; // Use insertion sort on tiny arrays if (length < INSERTION_SORT_THRESHOLD) { if (leftmost) { /* * Traditional (without sentinel) insertion sort, * optimized for server VM, is used in case of * the leftmost part. */ for (int i = left, j = i; i < right; j = ++i) { double ai = a[i + 1]; while (ai < a[j]) { a[j + 1] = a[j]; if (j-- == left) { break; } } a[j + 1] = ai; } } else { /* * Skip the longest ascending sequence. */ do { if (left >= right) { return; } } while (a[++left] >= a[left - 1]); /* * Every element from adjoining part plays the role * of sentinel, therefore this allows us to avoid the * left range check on each iteration. Moreover, we use * the more optimized algorithm, so called pair insertion * sort, which is faster (in the context of Quicksort) * than traditional implementation of insertion sort. */ for (int k = left; ++left <= right; k = ++left) { double a1 = a[k], a2 = a[left]; if (a1 < a2) { a2 = a1; a1 = a[left]; } while (a1 < a[--k]) { a[k + 2] = a[k]; } a[++k + 1] = a1; while (a2 < a[--k]) { a[k + 1] = a[k]; } a[k + 1] = a2; } double last = a[right]; while (last < a[--right]) { a[right + 1] = a[right]; } a[right + 1] = last; } return; } // Inexpensive approximation of length / 7 int seventh = (length >> 3) + (length >> 6) + 1; /* * Sort five evenly spaced elements around (and including) the * center element in the range. These elements will be used for * pivot selection as described below. The choice for spacing * these elements was empirically determined to work well on * a wide variety of inputs. */ int e3 = (left + right) >>> 1; // The midpoint int e2 = e3 - seventh; int e1 = e2 - seventh; int e4 = e3 + seventh; int e5 = e4 + seventh; // Sort these elements using insertion sort if (a[e2] < a[e1]) { double t = a[e2]; a[e2] = a[e1]; a[e1] = t; } if (a[e3] < a[e2]) { double t = a[e3]; a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } if (a[e4] < a[e3]) { double t = a[e4]; a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } if (a[e5] < a[e4]) { double t = a[e5]; a[e5] = a[e4]; a[e4] = t; if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } } // Pointers int less = left; // The index of the first element of center part int great = right; // The index before the first element of right part if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* * Use the second and fourth of the five sorted elements as pivots. * These values are inexpensive approximations of the first and * second terciles of the array. Note that pivot1 <= pivot2. */ double pivot1 = a[e2]; double pivot2 = a[e4]; /* * The first and the last elements to be sorted are moved to the * locations formerly occupied by the pivots. When partitioning * is complete, the pivots are swapped back into their final * positions, and excluded from subsequent sorting. */ a[e2] = a[left]; a[e4] = a[right]; /* * Skip elements, which are less or greater than pivot values. */ while (a[++less] < pivot1); while (a[--great] > pivot2); /* * Partitioning: * * left part center part right part * +--------------------------------------------------------------+ * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | * +--------------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot1 * pivot1 <= all in [less, k) <= pivot2 * all in (great, right) > pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { double ak = a[k]; if (ak < pivot1) { // Move a[k] to left part a[k] = a[less]; /* * Here and below we use "a[i] = b; i++;" instead * of "a[i++] = b;" due to performance issue. */ a[less] = ak; ++less; } else if (ak > pivot2) { // Move a[k] to right part while (a[great] > pivot2) { if (great-- == k) { break outer; } } if (a[great] < pivot1) { // a[great] <= pivot2 a[k] = a[less]; a[less] = a[great]; ++less; } else { // pivot1 <= a[great] <= pivot2 a[k] = a[great]; } /* * Here and below we use "a[i] = b; i--;" instead * of "a[i--] = b;" due to performance issue. */ a[great] = ak; --great; } } // Swap pivots into their final positions a[left] = a[less - 1]; a[less - 1] = pivot1; a[right] = a[great + 1]; a[great + 1] = pivot2; // Sort left and right parts recursively, excluding known pivots sort(a, left, less - 2, leftmost); sort(a, great + 2, right, false); /* * If center part is too large (comprises > 4/7 of the array), * swap internal pivot values to ends. */ if (less < e1 && e5 < great) { /* * Skip elements, which are equal to pivot values. */ while (a[less] == pivot1) { ++less; } while (a[great] == pivot2) { --great; } /* * Partitioning: * * left part center part right part * +----------------------------------------------------------+ * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | * +----------------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (*, less) == pivot1 * pivot1 < all in [less, k) < pivot2 * all in (great, *) == pivot2 * * Pointer k is the first index of ?-part. */ outer: for (int k = less - 1; ++k <= great; ) { double ak = a[k]; if (ak == pivot1) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else if (ak == pivot2) { // Move a[k] to right part while (a[great] == pivot2) { if (great-- == k) { break outer; } } if (a[great] == pivot1) { // a[great] < pivot2 a[k] = a[less]; /* * Even though a[great] equals to pivot1, the * assignment a[less] = pivot1 may be incorrect, * if a[great] and pivot1 are floating-point zeros * of different signs. Therefore in float and * double sorting methods we have to use more * accurate assignment a[less] = a[great]. */ a[less] = a[great]; ++less; } else { // pivot1 < a[great] < pivot2 a[k] = a[great]; } a[great] = ak; --great; } } } // Sort center part recursively sort(a, less, great, false); } else { // Partitioning with one pivot /* * Use the third of the five sorted elements as pivot. * This value is inexpensive approximation of the median. */ double pivot = a[e3]; /* * Partitioning degenerates to the traditional 3-way * (or "Dutch National Flag") schema: * * left part center part right part * +-------------------------------------------------+ * | < pivot | == pivot | ? | > pivot | * +-------------------------------------------------+ * ^ ^ ^ * | | | * less k great * * Invariants: * * all in (left, less) < pivot * all in [less, k) == pivot * all in (great, right) > pivot * * Pointer k is the first index of ?-part. */ for (int k = less; k <= great; ++k) { if (a[k] == pivot) { continue; } double ak = a[k]; if (ak < pivot) { // Move a[k] to left part a[k] = a[less]; a[less] = ak; ++less; } else { // a[k] > pivot - Move a[k] to right part while (a[great] > pivot) { --great; } if (a[great] < pivot) { // a[great] <= pivot a[k] = a[less]; a[less] = a[great]; ++less; } else { // a[great] == pivot /* * Even though a[great] equals to pivot, the * assignment a[k] = pivot may be incorrect, * if a[great] and pivot are floating-point * zeros of different signs. Therefore in float * and double sorting methods we have to use * more accurate assignment a[k] = a[great]. */ a[k] = a[great]; } a[great] = ak; --great; } } /* * Sort left and right parts recursively. * All elements from center part are equal * and, therefore, already sorted. */ sort(a, left, less - 1, leftmost); sort(a, great + 1, right, false); } } }