原文链接:http://kmplayer.iteye.com/blog/575725
ST算法(Sparse Table):它是一种动态规划的方法。
以最小值为例。a为所寻找的数组.
用一个二维数组f(i,j)记录区间[i,i+2^j-1](持续2^j个)区间中的最小值。其中f[i,0] = a[i];
所以,对于任意的一组(i,j),f(i,j) = min{f(i,j-1),f(i+2^(j-1),j-1)}来使用动态规划计算出来。
这个算法的高明之处不是在于这个动态规划的建立,而是它的查询:它的查询效率是O(1).
假设我们要求区间[m,n]中a的最小值,找到一个数k使得2^k<n-m+1.
这样,可以把这个区间分成两个部分:[m,m+2^k-1]和[n-2^k+1,n].我们发现,这两个区间是已经初始化好的.
前面的区间是f(m,k),后面的区间是f(n-2^k+1,k).
这样,只要看这两个区间的最小值,就可以知道整个区间的最小值!
CODE:
#include<iostream> #include<cmath> #include<algorithm> using namespace std; #define M 100010 #define MAXN 500 #define MAXM 500 int dp[M][18]; /* *一维RMQ ST算法 *构造RMQ数组 makermq(int n,int b[]) O(nlog(n))的算法复杂度 *dp[i][j] 表示从i到i+2^j -1中最小的一个值(从i开始持续2^j个数) *dp[i][j]=min{dp[i][j-1],dp[i+2^(j-1)][j-1]} *查询RMQ rmq(int s,int v) *将s-v 分成两个2^k的区间 *即 k=(int)log2(s-v+1) *查询结果应该为 min(dp[s][k],dp[v-2^k+1][k]) */ void makermq(int n,int b[]) { int i,j; for(i=0;i<n;i++) dp[i][0]=b[i]; for(j=1;(1<<j)<=n;j++) for(i=0;i+(1<<j)-1<n;i++) dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]); } int rmq(int s,int v) { int k=(int)(log((v-s+1)*1.0)/log(2.0)); return min(dp[s][k],dp[v-(1<<k)+1][k]); } void makeRmqIndex(int n,int b[]) //返回最小值对应的下标 { int i,j; for(i=0;i<n;i++) dp[i][0]=i; for(j=1;(1<<j)<=n;j++) for(i=0;i+(1<<j)-1<n;i++) dp[i][j]=b[dp[i][j-1]] < b[dp[i+(1<<(j-1))][j-1]]? dp[i][j-1]:dp[i+(1<<(j-1))][j-1]; } int rmqIndex(int s,int v,int b[]) { int k=(int)(log((v-s+1)*1.0)/log(2.0)); return b[dp[s][k]]<b[dp[v-(1<<k)+1][k]]? dp[s][k]:dp[v-(1<<k)+1][k]; } int main() { int a[]={3,4,5,7,8,9,0,3,4,5}; //返回下标 makeRmqIndex(sizeof(a)/sizeof(a[0]),a); cout<<rmqIndex(0,9,a)<<endl; cout<<rmqIndex(4,9,a)<<endl; //返回最小值 makermq(sizeof(a)/sizeof(a[0]),a); cout<<rmq(0,9)<<endl; cout<<rmq(4,9)<<endl; return 0; }