基于S3C2440的嵌入式Linux驱动——SPI子系统解读(四)

转自: http://blog.csdn.net/yj4231/article/details/7755709

感谢yj4231博主的辛勤劳动!!!


本系列文章对Linux设备模型中的SPI子系统进行讲解。SPI子系统的讲解将分为4个部分。

   第一部分,将对SPI子系统整体进行描述,同时给出SPI的相关数据结构,最后描述SPI总线的注册。基于S3C2440的嵌入式Linux驱动——SPI子系统解读(一)

   第二部分,该文将对SPI的主控制器(master)驱动进行描述。          基于S3C2440的嵌入式Linux驱动——SPI子系统解读(二)

   第三部分,该文将对SPI设备驱动,也称protocol 驱动,进行讲解。基于S3C2440的嵌入式Linux驱动——SPI子系统解读(三)

   第四部分,即本篇文章,通过SPI设备驱动留给用户层的API,我们将从上到下描述数据是如何通过SPI的protocol 驱动,由bitbang 中转,最后由master驱动将

                    数据传输出去。

本文属于第部分。

7. write,read和ioctl综述

      在spi设备驱动层提供了两种数据传输方式。一种是半双工方式,write方法提供了半双工读访问,read方法提供了半双工写访问。另一种就是全双工方式,ioctl调用将同时完成数据的传送与发送。

     在后面的描述中,我们将对write和ioctl方法做出详细的描述,而read方法和write极其相似,将不多做介绍。

     接下来首先看看write方法是如何实现的。

8. write方法

8.1 spidev_write

 在用户空间执行open打开设备文件以后,就可以执行write系统调用,该系统调用将会执行我们提供的write方法。代码如下:

 下列代码位于drivers/spi/spidev.c中。    

/* Write-only message with current device setup */
static ssize_t
spidev_write(struct file *filp, const char __user *buf,
		size_t count, loff_t *f_pos)
{
	struct spidev_data	*spidev;
	ssize_t			status = 0;
	unsigned long		missing;

	/* chipselect only toggles at start or end of operation */
	if (count > bufsiz)	/*数据大于4096字节*/
		return -EMSGSIZE;

	spidev = filp->private_data;

	mutex_lock(&spidev->buf_lock);
	/*将用户层的数据拷贝至buffer中,buffer在open方法中分配*/
	missing = copy_from_user(spidev->buffer, buf, count); 
	if (missing == 0) {
		status = spidev_sync_write(spidev, count);
	} else
		status = -EFAULT;
	mutex_unlock(&spidev->buf_lock);

	return status;
}

在这里,做的事情很少,主要就是从用户空间将需要发送的数据复制过来。然后调用spidev_sync_write。

8.2 spidev_sync_write

下列代码位于drivers/spi/spidev.c中。  

static inline ssize_t
spidev_sync_write(struct spidev_data *spidev, size_t len)
{
	struct spi_transfer	t = {
			.tx_buf		= spidev->buffer,
			.len		= len,
		};
	struct spi_message	m;

	spi_message_init(&m);
	spi_message_add_tail(&t, &m);
	return spidev_sync(spidev, &m);
}

static inline void spi_message_init(struct spi_message *m)
{
    memset(m, 0, sizeof *m);
    INIT_LIST_HEAD(&m->transfers);    /*初始化链表头*/
}

spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
{
    list_add_tail(&t->transfer_list, &m->transfers);/*添加transfer_list*/
}
在这里,创建了transfer和message。spi_transfer包含了要发送数据的信息。然后初始化了message中的transfer链表头,并将spi_transfer添加到了transfer链表中。也就是以spi_message的transfers为链表头的链表中,包含了transfer,而transfer正好包含了需要发送的数据。由此可见message其实是对transfer的封装。
最后,调用了spidev_sync,并将创建的spi_message作为参数传入。

8.3  spidev_sync

下列代码位于drivers/spi/spidev.c中。  

static ssize_t
spidev_sync(struct spidev_data *spidev, struct spi_message *message)
{
	DECLARE_COMPLETION_ONSTACK(done);	/*创建completion*/
	int status;

	message->complete = spidev_complete;/*定义complete方法*/
	message->context = &done;			/*complete方法的参数*/

	spin_lock_irq(&spidev->spi_lock);
	if (spidev->spi == NULL)
		status = -ESHUTDOWN;
	else
		status = spi_async(spidev->spi, message);/*异步,用complete来完成同步*/
	spin_unlock_irq(&spidev->spi_lock);

	if (status == 0) {
		wait_for_completion(&done);	/*在bitbang_work中调用complete方法来唤醒*/
		status = message->status;
		if (status == 0)
			status = message->actual_length;	/*返回发送的字节数*/
	}
	return status;
}
在这里,初始化了completion,这个东东将实现write系统调用的同步。在后面我们将会看到如何实现的。

随后调用了spi_async,从名字上可以看出该函数是异步的,也就是说该函数返回后,数据并没有被发送出去。因此使用了wait_for_completion来等待数据的发送完成,达到同步的目的。


8.4 spi_async

下列代码位于drivers/spi/spi.h中

/**
 * spi_async - asynchronous SPI transfer
 * @spi: device with which data will be exchanged
 * @message: describes the data transfers, including completion callback
 * Context: any (irqs may be blocked, etc)
 *
 * This call may be used in_irq and other contexts which can't sleep,
 * as well as from task contexts which can sleep.
 *
 * The completion callback is invoked in a context which can't sleep.
 * Before that invocation, the value of message->status is undefined.
 * When the callback is issued, message->status holds either zero (to
 * indicate complete success) or a negative error code.  After that
 * callback returns, the driver which issued the transfer request may
 * deallocate the associated memory; it's no longer in use by any SPI
 * core or controller driver code.
 *
 * Note that although all messages to a spi_device are handled in
 * FIFO order, messages may go to different devices in other orders.
 * Some device might be higher priority, or have various "hard" access
 * time requirements, for example.
 *
 * On detection of any fault during the transfer, processing of
 * the entire message is aborted, and the device is deselected.
 * Until returning from the associated message completion callback,
 * no other spi_message queued to that device will be processed.
 * (This rule applies equally to all the synchronous transfer calls,
 * which are wrappers around this core asynchronous primitive.)
 */
static inline int
spi_async(struct spi_device *spi, struct spi_message *message)
{
    message->spi = spi;       /*指出执行transfer的SPI接口*/
    return spi->master->transfer(spi, message);    /*即调用spi_bitbang_transfer*/
}
这个函数仅仅保存了spi_device信息后,然后调用了master的transfer方法,该方法在spi_bitbang_start中定义为spi_bitbang_transfer。


8.5 spi_bitbang_transfer

下列代码位于drivers/spi/spi_bitbang.c中。

/**
 * spi_bitbang_transfer - default submit to transfer queue
 */
int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
{
	struct spi_bitbang	*bitbang;
	unsigned long		flags;
	int			status = 0;

	m->actual_length = 0;
	m->status = -EINPROGRESS;

	bitbang = spi_master_get_devdata(spi->master);

	spin_lock_irqsave(&bitbang->lock, flags);
	if (!spi->max_speed_hz)
		status = -ENETDOWN;
	else {
        /*下面的工作队列和queue在spi_bitbang_start函数中初始化*/
        list_add_tail(&m->queue, &bitbang->queue);    /*将message添加到bitbang的queue链表中*/
        queue_work(bitbang->workqueue, &bitbang->work);    /*提交工作到工作队列*/
	}
	spin_unlock_irqrestore(&bitbang->lock, flags);

	return status;
}
这里将message添加到了bitbang的queue链表中。然后提交了一个工作到工作队列,随后函数返回到spi_async,又返回到 spidev_sync中。为方便将spidev_sync的部分代码列出:
status = spi_async(spidev->spi, message);/*异步,用complete来完成同步*/
	spin_unlock_irq(&spidev->spi_lock);

	if (status == 0) {
		wait_for_completion(&done);	/*在bitbang_work中调用complete方法来唤醒*/
		status = message->status;
		if (status == 0)
			status = message->actual_length;	/*返回发送的字节数*/
	}
	return status;
 当spi_async函数返回后,需要发送的数据已经通过工作的形式添加到了工作队列,在稍后的工作执行时,将完成数据的发送。随后调用了wait_for_completion等待数据的发送完成。到此,可以看出completion的使用是用来完成同步I/O的


8.6 bitbang_work

  在上一节最后添加了工作bitbang->work到工作队列中,在过一段时候后,内核将以进程执行该work。而work即为在spi_bitbang_start中定义的bitbang_work函数。我们来看下这个函数。

  下列代码位于drivers/spi/spi_bitbang.c中。 

/*
 * SECOND PART ... simple transfer queue runner.
 *
 * This costs a task context per controller, running the queue by
 * performing each transfer in sequence.  Smarter hardware can queue
 * several DMA transfers at once, and process several controller queues
 * in parallel; this driver doesn't match such hardware very well.
 *
 * Drivers can provide word-at-a-time i/o primitives, or provide
 * transfer-at-a-time ones to leverage dma or fifo hardware.
 */
static void bitbang_work(struct work_struct *work)
{
    struct spi_bitbang    *bitbang =
        container_of(work, struct spi_bitbang, work);    /*获取spi_bitbang*/
    unsigned long        flags;

    spin_lock_irqsave(&bitbang->lock, flags);    /*自旋锁加锁*/
    bitbang->busy = 1;        /*bitbang忙碌*/
    while (!list_empty(&bitbang->queue)) {    /*有spi_message*/
        struct spi_message    *m;
        struct spi_device    *spi;
        unsigned        nsecs;
        struct spi_transfer    *t = NULL;
        unsigned        tmp;
        unsigned        cs_change;
        int            status;
        int            (*setup_transfer)(struct spi_device *,
                        struct spi_transfer *);

        m = container_of(bitbang->queue.next, struct spi_message,/*获取spi_message*/
                queue);        
        list_del_init(&m->queue);        /*以获取spi_message,删除该spi_message*/
        spin_unlock_irqrestore(&bitbang->lock, flags);/*释放自旋锁*/

        /* FIXME this is made-up ... the correct value is known to
         * word-at-a-time bitbang code, and presumably chipselect()
         * should enforce these requirements too?
         */
        nsecs = 100;

        spi = m->spi;
        tmp = 0;
        cs_change = 1;
        status = 0;
        setup_transfer = NULL;

        /*遍历,获取所有的spi_transfer*/
        list_for_each_entry (t, &m->transfers, transfer_list) {    

            /* override or restore speed and wordsize */
            if (t->speed_hz || t->bits_per_word) { /*如果这两个参数有任何一个已经设置了,本例中没有定义*/
                setup_transfer = bitbang->setup_transfer;
                if (!setup_transfer) {
                    status = -ENOPROTOOPT;
                    break;
                }
            }
            if (setup_transfer) {        /*本例中为NULL*/
                status = setup_transfer(spi, t);
                if (status < 0)
                    break;
            }

            /* set up default clock polarity, and activate chip;
             * this implicitly updates clock and spi modes as
             * previously recorded for this device via setup().
             * (and also deselects any other chip that might be
             * selected ...)
             */
            if (cs_change) {                                /*初值为1*/
                bitbang->chipselect(spi, BITBANG_CS_ACTIVE);/*即调用s3c24xx_spi_chipsel,激活CS信号,写寄存器,设置SPI模式*/
                ndelay(nsecs);                                /*延迟100纳秒*/
            }
            cs_change = t->cs_change;                        /*保存cs_change*/                
            if (!t->tx_buf && !t->rx_buf && t->len) {        /*检查参数*/
                status = -EINVAL;
                break;
            }

            /* transfer data.  the lower level code handles any
             * new dma mappings it needs. our caller always gave
             * us dma-safe buffers.
             */
            if (t->len) {
                /* REVISIT dma API still needs a designated
                 * DMA_ADDR_INVALID; ~0 might be better.
                 */
                if (!m->is_dma_mapped)
                    t->rx_dma = t->tx_dma = 0;            /*不使用DMA*/
                status = bitbang->txrx_bufs(spi, t);    /*即调用s3c24xx_spi_txrx,开始发送数据,status为已发送数据的大小*/
            }
            if (status > 0)
                m->actual_length += status;    /*保存已发送字节*/
            if (status != t->len) {    /*要求发送和已发送的大小不同*/
                /* always report some kind of error */
                if (status >= 0)
                    status = -EREMOTEIO;
                break;
            }
            status = 0;

            /* protocol tweaks before next transfer */
            if (t->delay_usecs)
                udelay(t->delay_usecs);    /*延迟*/

            if (!cs_change)/*判断是否需要禁止CS,为1表示要求在两次数据传输之间禁止CS*/
                continue;
            if (t->transfer_list.next == &m->transfers)    /*没有transfer*/
                break;

            /* sometimes a short mid-message deselect of the chip
             * may be needed to terminate a mode or command
             */
            ndelay(nsecs);    /*延迟*/
            bitbang->chipselect(spi, BITBANG_CS_INACTIVE);    /*禁止CS*/
            ndelay(nsecs);
        }    /*遍历spi_transfer结束*/

        m->status = status;
        m->complete(m->context); /*调用complete,一个message处理完毕*/

        /* restore speed and wordsize */
        if (setup_transfer)
            setup_transfer(spi, NULL);

        /* normally deactivate chipselect ... unless no error and
         * cs_change has hinted that the next message will probably
         * be for this chip too.
         */
        if (!(status == 0 && cs_change)) {
            ndelay(nsecs);
            bitbang->chipselect(spi, BITBANG_CS_INACTIVE);    /*禁止CS*/
            ndelay(nsecs);
        }

        spin_lock_irqsave(&bitbang->lock, flags);
    }
    bitbang->busy = 0;    
    spin_unlock_irqrestore(&bitbang->lock, flags);
}
本函数中,调用了两个方法bibang->chipselect和bitbang->txrx_bufs,这两个方法实际调用了s3c24xx_spi_chipsel和s3c24xx_spi_txrx函数,这两个函数都是master驱动层提供的函数。 s3c24xx_spi_chipsel 已经在4.2.2节中给出,该函 数设置控制寄存器并激活CS信号。s3c24xx_spi_txrx函数的实参t,即为spi_transfer,函数完成该spi_transfer中数据的发送,并返回已发送的字节数。然后,判断是否需要禁止CS。接着遍历到下一个spi_transfer,再次发送数据。当所 有spi_transfer发送完成以后,将调用complete方法,从而让在spidev_sync函数中等待completion的函数返回。下面,先来来看下数据是怎么发送出去的,也就是s3c24xx_spi_txrx函数。最后,看看complete方法。


8.7 s3c24xx_spi_txrx 和s3c24xx_spi_irq

下列代码位于deivers/spi/s3c24xx.c。

static inline unsigned int hw_txbyte(struct s3c24xx_spi *hw, int count)
{
    return hw->tx ? hw->tx[count] : 0;    /*发送缓冲区指针是否为空,空则发送0*/
}

static int s3c24xx_spi_txrx(struct spi_device *spi, struct spi_transfer *t)/*bitbang.txrx_bufs方法*/
{
    struct s3c24xx_spi *hw = to_hw(spi);

    dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
        t->tx_buf, t->rx_buf, t->len);
    /*保存transfer相关数据到s3c24xx_sp结构中*/
    hw->tx = t->tx_buf;
    hw->rx = t->rx_buf;
    hw->len = t->len;
    hw->count = 0;

    init_completion(&hw->done);    /*初始化completion*/

    /* send the first byte */    /*发送第一个数据,tx[0]*/
    writeb(hw_txbyte(hw, 0), hw->regs + S3C2410_SPTDAT);

    wait_for_completion(&hw->done);/*等待completion*/

    return hw->count;  /*返回发送的字节数*/
}

static irqreturn_t s3c24xx_spi_irq(int irq, void *dev)
{
    struct s3c24xx_spi *hw = dev;
    unsigned int spsta = readb(hw->regs + S3C2410_SPSTA);/*获取状态寄存器*/
    unsigned int count = hw->count;

    if (spsta & S3C2410_SPSTA_DCOL) {    /*发生错误*/
        dev_dbg(hw->dev, "data-collision\n");
        complete(&hw->done);    /*唤醒等待complete的进程*/
        goto irq_done;
    }

    if (!(spsta & S3C2410_SPSTA_READY)) {/*未就绪*/
        dev_dbg(hw->dev, "spi not ready for tx?\n");
        complete(&hw->done);    /*唤醒等待complete的进程*/
        goto irq_done;
    }

    hw->count++;/*增加计数*/

    if (hw->rx)
        hw->rx[count] = readb(hw->regs + S3C2410_SPRDAT);/*读取数据*/

    count++;    /*增加计数*/

    if (count < hw->len)         /*未发送完毕,则继续发送*/
        writeb(hw_txbyte(hw, count), hw->regs + S3C2410_SPTDAT);
    else
        complete(&hw->done);    /*发送完毕,唤醒等待complete的进程*/

 irq_done:
    return IRQ_HANDLED;
} 
在s3c24xx_spi_txrx函数中,首先发送了待发送数据中的第一个字节,随后就调用wait_for_completion来等待剩余的数据发送完成。

NOTE:这里的completion是master驱动层的,spi设备驱动也有一个completion,用于IO同步,不要混淆。

当第一个数据发送完成以后,SPI中断产生,开始执行中断服务程序。在中断服务程序中,将判断是否需要读取数据,如果是则从寄存器中读取数据。

NOTE:如果是使用read系统调用,那么在此发送的数据将是0。

随后发送下一个数据,直到数据发送完成。发送完成后调用complete,使在s3c24xx_spi_txrx的wait_for_completion得以返回。接着,s3c24xx_spi_txrx就将返回已发送的字节数。

NOTE:其实该中断服务子程序实现了全双工数据的传输,只不过特定于具体的系统调用,从而分为了半双工读和写。


8.8 complete方法

在8.6节的bitbang_work中,当一个message的所有数据发送完成以后,将会调用complete函数。该函数如下:

/*
 * We can't use the standard synchronous wrappers for file I/O; we
 * need to protect against async removal of the underlying spi_device.
 */
static void spidev_complete(void *arg)
{
	complete(arg);
}
该函数将使在spidev_sync函数中的wait_for_completion得以返回,从而完成了同步IO。

至此,整个write系统调用的流程均以讲解完毕,在这其中也对在master和protocol中未曾给出的函数做出了一一讲解,最后,对第8章进行小结。


8.9 小结

   从示意图中,我们可以很清除看到函数的调用过程:先调用spi设备驱动层,随后调用bitbang中间层,最后调用了master驱动层来完成数据的传输。


9. read方法

read方法和write方法基本差不多,关键的区别在于其发送的数据为0,而在s3c24xx_spi_txrx中断服务程序中将读取数据寄存器。下面仅仅给出函数调用示意图。


在这里给出spidev_read和spidev_sync_read,方便读者进行对比。

/* Read-only message with current device setup */
static ssize_t
spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
{
	struct spidev_data	*spidev;
	ssize_t			status = 0;

	/* chipselect only toggles at start or end of operation */
	if (count > bufsiz)	/*如果读取的字节数大于缓冲区的大小,则报错*/
		return -EMSGSIZE;

	spidev = filp->private_data;	/*获取spidev*/

	mutex_lock(&spidev->buf_lock);	/*加锁,对buffer进行互斥房屋内*/
	status = spidev_sync_read(spidev, count);
	if (status > 0) {
		unsigned long	missing;

		missing = copy_to_user(buf, spidev->buffer, status);
		if (missing == status)
			status = -EFAULT;
		else
			status = status - missing;
	}
	mutex_unlock(&spidev->buf_lock);

	return status;
}

static inline ssize_t
spidev_sync_read(struct spidev_data *spidev, size_t len)
{
    struct spi_transfer    t = {
            .rx_buf        = spidev->buffer,
            .len        = len,
        };
    struct spi_message    m;

    spi_message_init(&m);    /*初始化message*/
    spi_message_add_tail(&t, &m);    /*添加transfer*/
    return spidev_sync(spidev, &m);
}


10. ioctl方法
   这一章节中,我们将看一下SPI子系统是如何使用ioctl系统调用来实现全双工读写。

10.1 spi_ioc_transfer

   在使用ioctl时,用户空间要使用一个数据结构来封装需要传输的数据,该结构为spi_ioc_transfe。而在write系统调用时,只是简单的从用户空间复制数据过来。该结构中的很多字段将被复制到spi_transfer结构中相应的字段。也就是说一个spi_ioc_transfer表示一个spi_transfer,用户空间可以定义多个spi_ioc_transfe,最后以数组形式传递给ioctl。

   下面同时给出ioctl中cmd的值。其中SPI_IOC_MASSAGE用于实现全双工IO,而其他的用于设置或者读取某个特定值。

   下列数据结构位于:include/linux/spi/spidev.h。

/**
 * struct spi_ioc_transfer - describes a single SPI transfer
 * @tx_buf: Holds pointer to userspace buffer with transmit data, or null.
 *	If no data is provided, zeroes are shifted out.
 * @rx_buf: Holds pointer to userspace buffer for receive data, or null.
 * @len: Length of tx and rx buffers, in bytes.
 * @speed_hz: Temporary override of the device's bitrate.
 * @bits_per_word: Temporary override of the device's wordsize.
 * @delay_usecs: If nonzero, how long to delay after the last bit transfer
 *	before optionally deselecting the device before the next transfer.
 * @cs_change: True to deselect device before starting the next transfer.
 *
 * This structure is mapped directly to the kernel spi_transfer structure;
 * the fields have the same meanings, except of course that the pointers
 * are in a different address space (and may be of different sizes in some
 * cases, such as 32-bit i386 userspace over a 64-bit x86_64 kernel).
 * Zero-initialize the structure, including currently unused fields, to
 * accomodate potential future updates.
 *
 * SPI_IOC_MESSAGE gives userspace the equivalent of kernel spi_sync().
 * Pass it an array of related transfers, they'll execute together.
 * Each transfer may be half duplex (either direction) or full duplex.
 *
 *	struct spi_ioc_transfer mesg[4];
 *	...
 *	status = ioctl(fd, SPI_IOC_MESSAGE(4), mesg);
 *
 * So for example one transfer might send a nine bit command (right aligned
 * in a 16-bit word), the next could read a block of 8-bit data before
 * terminating that command by temporarily deselecting the chip; the next
 * could send a different nine bit command (re-selecting the chip), and the
 * last transfer might write some register values.
 */
struct spi_ioc_transfer {
	__u64		tx_buf;
	__u64		rx_buf;

	__u32		len;
	__u32		speed_hz;

	__u16		delay_usecs;
	__u8		bits_per_word;
	__u8		cs_change;
	__u32		pad;

	/* If the contents of 'struct spi_ioc_transfer' ever change
	 * incompatibly, then the ioctl number (currently 0) must change;
	 * ioctls with constant size fields get a bit more in the way of
	 * error checking than ones (like this) where that field varies.
	 *
	 * NOTE: struct layout is the same in 64bit and 32bit userspace.
	 */
};

/* not all platforms use <asm-generic/ioctl.h> or _IOC_TYPECHECK() ... */
#define SPI_MSGSIZE(N) \                /*SPI_MSGSIZE不能大于4KB*/
    ((((N)*(sizeof (struct spi_ioc_transfer))) < (1 << _IOC_SIZEBITS)) \
        ? ((N)*(sizeof (struct spi_ioc_transfer))) : 0)
#define SPI_IOC_MESSAGE(N) _IOW(SPI_IOC_MAGIC, 0, char[SPI_MSGSIZE(N)])


/* Read / Write of SPI mode (SPI_MODE_0..SPI_MODE_3) */
#define SPI_IOC_RD_MODE            _IOR(SPI_IOC_MAGIC, 1, __u8)
#define SPI_IOC_WR_MODE            _IOW(SPI_IOC_MAGIC, 1, __u8)

/* Read / Write SPI bit justification */
#define SPI_IOC_RD_LSB_FIRST        _IOR(SPI_IOC_MAGIC, 2, __u8)
#define SPI_IOC_WR_LSB_FIRST        _IOW(SPI_IOC_MAGIC, 2, __u8)

/* Read / Write SPI device word length (1..N) */
#define SPI_IOC_RD_BITS_PER_WORD    _IOR(SPI_IOC_MAGIC, 3, __u8)
#define SPI_IOC_WR_BITS_PER_WORD    _IOW(SPI_IOC_MAGIC, 3, __u8)

/* Read / Write SPI device default max speed hz */
#define SPI_IOC_RD_MAX_SPEED_HZ        _IOR(SPI_IOC_MAGIC, 4, __u32)
#define SPI_IOC_WR_MAX_SPEED_HZ        _IOW(SPI_IOC_MAGIC, 4, __u32)

10.2 spidev_ioctl

在用户空间执行ioctl系统调用时,将会执行spidev_ioctl方法,我们来看下。

下列代码位于drivers/spi/spidev.c

static long
spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	int			err = 0;
	int			retval = 0;
	struct spidev_data	*spidev;
	struct spi_device	*spi;
	u32			tmp;
	unsigned		n_ioc;
	struct spi_ioc_transfer	*ioc;

	/* Check type and command number */
	if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC)	/*如果幻数不想等,则报错*/
		return -ENOTTY;

	/* Check access direction once here; don't repeat below.
	 * IOC_DIR is from the user perspective, while access_ok is
	 * from the kernel perspective; so they look reversed.
	 */
	 /*对用户空间的指针进行检查,分成读写两部分检查*/
	if (_IOC_DIR(cmd) & _IOC_READ、
		err = !access_ok(VERIFY_WRITE,	/*access_ok成功返回1*/
				(void __user *)arg, _IOC_SIZE(cmd));
	if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE)
		err = !access_ok(VERIFY_READ,
				(void __user *)arg, _IOC_SIZE(cmd));
	if (err)
		return -EFAULT;

	/* guard against device removal before, or while,
	 * we issue this ioctl.
	 */
	spidev = filp->private_data;		/*获取spidev*/
	spin_lock_irq(&spidev->spi_lock);
	spi = spi_dev_get(spidev->spi);		/*增加引用技术,并获取spi_device*/
	spin_unlock_irq(&spidev->spi_lock);

	if (spi == NULL)
		return -ESHUTDOWN;

	/* use the buffer lock here for triple duty:
	 *  - prevent I/O (from us) so calling spi_setup() is safe;
	 *  - prevent concurrent SPI_IOC_WR_* from morphing
	 *    data fields while SPI_IOC_RD_* reads them;
	 *  - SPI_IOC_MESSAGE needs the buffer locked "normally".
	 */
	mutex_lock(&spidev->buf_lock);	/*加锁互斥体*/

	switch (cmd) {
	/* read requests */		/*读取请求*/
	case SPI_IOC_RD_MODE:
		retval = __put_user(spi->mode & SPI_MODE_MASK,
					(__u8 __user *)arg);
		break;
	case SPI_IOC_RD_LSB_FIRST:
		retval = __put_user((spi->mode & SPI_LSB_FIRST) ?  1 : 0,
					(__u8 __user *)arg);
		break;
	case SPI_IOC_RD_BITS_PER_WORD:
		retval = __put_user(spi->bits_per_word, (__u8 __user *)arg);
		break;
	case SPI_IOC_RD_MAX_SPEED_HZ:
		retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg);
		break;

	/* write requests */	/*写请求*/
	case SPI_IOC_WR_MODE:	
		retval = __get_user(tmp, (u8 __user *)arg);
		if (retval == 0) {			/*__get_user调用成功*/
			u8	save = spi->mode;	/*保存原先的值*/

			if (tmp & ~SPI_MODE_MASK) {
				retval = -EINVAL;
				break;				/*模式有错误,则跳出switch*/
			}

			tmp |= spi->mode & ~SPI_MODE_MASK;/*这步貌似多此一举????*/
			spi->mode = (u8)tmp;
			retval = spi_setup(spi);/*调用master->setup方法,即s3c24xx_spi_setup*/
			if (retval < 0)
				spi->mode = save;	/*调用不成功,恢复参数*/
			else
				dev_dbg(&spi->dev, "spi mode %02x\n", tmp);
		}
		break;
	case SPI_IOC_WR_LSB_FIRST:
		retval = __get_user(tmp, (__u8 __user *)arg);
		if (retval == 0) {
			u8	save = spi->mode;

			if (tmp)				/*参数为正整数,设置为LSB*/
				spi->mode |= SPI_LSB_FIRST;
			else					/*参数为0,设置为非LSB*/
				spi->mode &= ~SPI_LSB_FIRST;
			retval = spi_setup(spi);/*调用master->setup方法,即s3c24xx_spi_setup?/	
			if (retval < 0)
				spi->mode = save; 	/*调用不成功,恢复参数*/
			else
				dev_dbg(&spi->dev, "%csb first\n",
						tmp ? 'l' : 'm');
		}
		break;
	case SPI_IOC_WR_BITS_PER_WORD:
		retval = __get_user(tmp, (__u8 __user *)arg);
		if (retval == 0) {
			u8	save = spi->bits_per_word;

			spi->bits_per_word = tmp;
			retval = spi_setup(spi);	/*调用master->setup方法,即s3c24xx_spi_setup*/	
			if (retval < 0)
				spi->bits_per_word = save;
			else
				dev_dbg(&spi->dev, "%d bits per word\n", tmp);
		}
		break;
	case SPI_IOC_WR_MAX_SPEED_HZ:
		retval = __get_user(tmp, (__u32 __user *)arg);
		if (retval == 0) {
			u32	save = spi->max_speed_hz;

			spi->max_speed_hz = tmp;
			retval = spi_setup(spi);	/*调用master->setup方法,即s3c24xx_spi_setup*/	
			if (retval < 0)
				spi->max_speed_hz = save;
			else
				dev_dbg(&spi->dev, "%d Hz (max)\n", tmp);
		}
		break;

	default:
		/* segmented and/or full-duplex I/O request */	/*全双工,接受发送数据*/
		if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0))
				|| _IOC_DIR(cmd) != _IOC_WRITE) {
			retval = -ENOTTY;
			break;
		}

		tmp = _IOC_SIZE(cmd);		/*获取参数的大小,参数为spi_ioc_transfer数组*/
		if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) {/*检查tmp是否为后者的整数倍*/
			retval = -EINVAL;
			break;
		}
		n_ioc = tmp / sizeof(struct spi_ioc_transfer); /*计算共有几个spi_ioc_transfer*/
		if (n_ioc == 0)
			break;

		/* copy into scratch area */
		ioc = kmalloc(tmp, GFP_KERNEL);
		if (!ioc) {
			retval = -ENOMEM;
			break;
		}
		/*从用户空间拷贝spi_ioc_transfer数组,不对用户空间指针进行检查*/
		if (__copy_from_user(ioc, (void __user *)arg, tmp)) {
			kfree(ioc);
			retval = -EFAULT;
			break;
		}

		/* translate to spi_message, execute */
		retval = spidev_message(spidev, ioc, n_ioc);
		kfree(ioc);
		break;
	}

	mutex_unlock(&spidev->buf_lock);
	spi_dev_put(spi);	/*减少引用计数*/
	return retval;
}
 在函数中,首先对cmd进行了一些列的检查。随后使用switch语句来判读cmd,并执行相应的功能。cmd的第一部分为读请求,分别从寄存器读取4个参数。第二部分为写请求,分别用于修改4个参数并写入寄存器。剩余的第三部分就 是全双工读写请求,这是会先计算共有多少个spi_ioc_transfer,然后分配空间,从用户空间将spi_ioc_transfer数组拷贝过来,然后将该数组和数组个数作为参数调用spidev_message。


10.3 spidev_message

static int spidev_message(struct spidev_data *spidev,
		struct spi_ioc_transfer *u_xfers, unsigned n_xfers)
{
	struct spi_message	msg;
	struct spi_transfer	*k_xfers;
	struct spi_transfer	*k_tmp;
	struct spi_ioc_transfer *u_tmp;
	unsigned		n, total;
	u8			*buf;
	int			status = -EFAULT;
	
	spi_message_init(&msg);		/*初始化message*/
	k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL);	/*分配内存,并清0*/
	if (k_xfers == NULL)
		return -ENOMEM;

	/* Construct spi_message, copying any tx data to bounce buffer.
	 * We walk the array of user-provided transfers, using each one
	 * to initialize a kernel version of the same transfer.
	 */
	buf = spidev->buffer;	/*所有的spi_transfer共享该buffer*/
	total = 0;	
	/*遍历spi_ioc_transfer数组,拷贝相应的参数至spi_transfer数组*/
	for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers;
			n;
			n--, k_tmp++, u_tmp++) {
		k_tmp->len = u_tmp->len;

		total += k_tmp->len;
		if (total > bufsiz) {  /*缓冲区长度为4096字节*/
			status = -EMSGSIZE;
			goto done;
		}

		if (u_tmp->rx_buf) {	/*需要接受收据*/
			k_tmp->rx_buf = buf;
			if (!access_ok(VERIFY_WRITE, (u8 __user *)	/*检查指针*/
						(uintptr_t) u_tmp->rx_buf,
						u_tmp->len))
				goto done;
		}
		if (u_tmp->tx_buf) {	/*需要发送数据*/
			k_tmp->tx_buf = buf;
			if (copy_from_user(buf, (const u8 __user *)	/*将用户空间待发送的数据拷贝至buf中*/
						(uintptr_t) u_tmp->tx_buf,
					u_tmp->len))
				goto done;
		}
		buf += k_tmp->len;		/*修改buf指针,指向下一个transfer的缓冲区首地址*/
		/*复制四个参数*/
		k_tmp->cs_change = !!u_tmp->cs_change;
		k_tmp->bits_per_word = u_tmp->bits_per_word;
		k_tmp->delay_usecs = u_tmp->delay_usecs;
		k_tmp->speed_hz = u_tmp->speed_hz;
#ifdef VERBOSE
		dev_dbg(&spi->dev,
			"  xfer len %zd %s%s%s%dbits %u usec %uHz\n",
			u_tmp->len,
			u_tmp->rx_buf ? "rx " : "",
			u_tmp->tx_buf ? "tx " : "",
			u_tmp->cs_change ? "cs " : "",
			u_tmp->bits_per_word ? : spi->bits_per_word,
			u_tmp->delay_usecs,
			u_tmp->speed_hz ? : spi->max_speed_hz);
#endif
		spi_message_add_tail(k_tmp, &msg); /*添加spi_transfer到message的链表中*/
	}

	/*spidev_sync->spi_async->spi_bitbang_transfer->bitbang_work->s3c24xx_spi_txrx*/
	status = spidev_sync(spidev, &msg);	
	if (status < 0)
		goto done;

	/* copy any rx data out of bounce buffer */
	buf = spidev->buffer;
	for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) {
		if (u_tmp->rx_buf) {
			if (__copy_to_user((u8 __user *)
					(uintptr_t) u_tmp->rx_buf, buf,	/*从buf缓冲区复制数据到用户空间*/
					u_tmp->len)) {
				status = -EFAULT;
				goto done;
			}
		}
		buf += u_tmp->len;
	}
	status = total;

done:
	kfree(k_xfers);
	return status;
}
 首先,根据 spi_ioc_transfe r的个数,分配了同样个数的spi_transfer,把spi_ioc_transfer中的信息复制给spi_transfer,然后将spi_transfer添加到spi_message的链

 表中。接着。执行了spidev_sync,这个东西似乎似曾相识,这个函数就 8.3  小结的函数。之后的过程就和前面的write、read一样了。

 其实,这个函数的作用就是把所需要完成的数据传输任务转换成spi_transfer,然后添加到message的连表中。

 从spidev_sync返回以后,数据传输完毕,将读取到的数据,复制到用户空间。至此,整个ioctl系统调用的过程就结束了。

10.4 小结


事实上,全速工io和半双工io的执行过程基本一样,只不过ioctl需要一个专用的结构体来封装传输的任务,接着将该任务转换成对应的spi_transfer,最后交给spidev_sync。


11. 结束语

   本系列文章先从最底层的master驱动开始讲解,接着描述了高层的spi设备驱动,然后,通过系统调用接口,从上至下的讲解了整个函数的调用过程。最终,

   我们可以很清除看到半双工读和半双写的区别和相似之处,以及半双工IO和全双工IO的区别和相似之处。

   最后,希望该系列文章能帮助你了解Linux的SPI子系统。









你可能感兴趣的:(基于S3C2440的嵌入式Linux驱动——SPI子系统解读(四))