傅里叶变换的物理意义

假设信号的采样频率是Fs,信号的频率是F,采样点数为N,则与傅里叶变换相关概念几个计算公式如下:

1.      频率计算公式

                                                                                                            

2.      振幅计算公式 Magnitude

                傅里叶变换的物理意义_第1张图片

     


3.       相位计算公式Pan

                          傅里叶变换的物理意义_第2张图片

 

 

示例:假设有如下两个交流信号,以512的采样率对信号进行采样,采样点数也为512点。

     信号1:  2V的直流分量,幅度为5V,频率为100hz,相位为30度。

     信号2:幅度为3V,频率为200hz,相位为-60度。

用数学表达式来描述如下:

                                                               

下面的matlab脚本画出其频谱图:

>>N_data_size = 512;
>> t = [0:1:N_data_size];
>> fs = 512;
>> t = t/fs;
>> s = 2 + 5 * cos(2 * pi * 100 * t +30 * pi / 180) + 3 * cos(2 * pi * 200 * t-60 * pi / 180);
>> M = abs(fft(s,N_data_size));
>> plot(M);
                               傅里叶变换的物理意义_第3张图片
                                   

 

 

因采样点数等于采样频率,因此两个点之间的频率间隔是1Hz。按照频率计算公式Fn=(n-1)*FS/N计算,第n个点的频率就是n-1.因此第101个点的频谱就是100,对应于原始信号第一个交流信号的频率,第201个点的频率是200,对应于第二个交流信号的频率。由此可知,图像应该在第0,101,201三个点上出现峰值。从上面的图看,确实是这样。注意,频谱图关于奈奎斯特频率是对称的,所以只看奎斯特频率以下的部分就可以了。

 

根据前面的公式,第一个点的模值为直流分量*N = 2 *512 = 1024;

第一个原始信号的峰值为A =5,因此它的模值为 A * N/2= 5 * 512/2 = 1280;

第二个原始信号的峰值为A=3,因此它的模值为 A * N/2 =3 * 512/2 = 768;

 

分别拿出这三个点的FFT结果来细看:

第一个点的FFT结果: 1024 + 0* i , A1 = sqrt(1024*1024) = 1024;

第二个点的FFT结果:1108.5+640*I,A101 = sqrt(1108.5*1108.5+640*640) = 1280;

第三个点的FFT结果:384-665.11i,A201= sqrt(384*384+665.11*665.11) = 768;

 

由此可见,如果知道了每个频率点信号的峰值和采样点数,那么很容易计算出它的模值。反过来也是如此,即如果用FFT计算出了信号的模值,也很容易计算出原始信号的峰值。例如,对于上例:直流分量的值:A= A1/N = 1024/512 = 2;

交流信号1的幅度为:A =A101/N/2=1280*2/512=5;

交流信号2的幅度为:A=A201/N/2=768*2/512=3.


相位的计算就更简单,从略。

 

你可能感兴趣的:(傅里叶变换的物理意义)