第十三周项目一~~Prim算法的验证和Kruskal算法的验证

/*问题及代码
 *Copyright(c)2015,烟台大学计算机学院
 *All right reserved.
 *文件名称:Prim算法的验证和Kruskal算法的验证.cpp
 *作者:李浩
 *时间:11月23日
 *版本号;v1.0
 *问题描述:
         
    Prim算法的验证和Kruskal算法的验证
 *输入描述:带权图的邻接矩阵
 *程序输出:最小生成树各边的权
*/

#include <stdio.h>
#include <malloc.h>
#define MAXV 100                //最大顶点个数
#define INF 32767       //INF表示∞
typedef int InfoType;

//以下定义邻接矩阵类型
typedef struct
{
    int no;                     //顶点编号
    InfoType info;              //顶点其他信息,在此存放带权图权值
} VertexType;                   //顶点类型

typedef struct                  //图的定义
{
    int edges[MAXV][MAXV];      //邻接矩阵
    int n,e;                    //顶点数,弧数
    VertexType vexs[MAXV];      //存放顶点信息
} MGraph;                       //图的邻接矩阵类型

//以下定义邻接表类型
typedef struct ANode            //弧的结点结构类型
{
    int adjvex;                 //该弧的终点位置
    struct ANode *nextarc;      //指向下一条弧的指针
    InfoType info;              //该弧的相关信息,这里用于存放权值
} ArcNode;

typedef int Vertex;

typedef struct Vnode            //邻接表头结点的类型
{
    Vertex data;                //顶点信息
    int count;                  //存放顶点入度,只在拓扑排序中用
    ArcNode *firstarc;          //指向第一条弧
} VNode;

typedef VNode AdjList[MAXV];    //AdjList是邻接表类型

typedef struct
{
    AdjList adjlist;            //邻接表
    int n,e;                    //图中顶点数n和边数e
} ALGraph;                      //图的邻接表类型
void ArrayToMat(int *Arr, int n, MGraph &g);
void Prim(MGraph g,int v);
void ArrayToMat(int *Arr, int n, MGraph &g)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    g.n=n;
    for (i=0; i<g.n; i++)
        for (j=0; j<g.n; j++)
        {
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
            if(g.edges[i][j]!=0)
                count++;
        }
    g.e=count;
}

void Prim(MGraph g,int v)
{
    int lowcost[MAXV];          //顶点i是否在U中
    int min;
    int closest[MAXV],i,j,k;
    for (i=0; i<g.n; i++)           //给lowcost[]和closest[]置初值
    {
        lowcost[i]=g.edges[v][i];
        closest[i]=v;
    }
    for (i=1; i<g.n; i++)           //找出n-1个顶点
    {
        min=INF;
        for (j=0; j<g.n; j++)     //在(V-U)中找出离U最近的顶点k
            if (lowcost[j]!=0 && lowcost[j]<min)
            {
                min=lowcost[j];
                k=j;            //k记录最近顶点的编号
            }
        printf(" 边(%d,%d)权为:%d\n",closest[k],k,min);
        lowcost[k]=0;           //标记k已经加入U
        for (j=0; j<g.n; j++)       //修改数组lowcost和closest
            if (g.edges[k][j]!=0 && g.edges[k][j]<lowcost[j])
            {
                lowcost[j]=g.edges[k][j];
                closest[j]=k;
            }
    }
}

int main()
{
    MGraph g;
    int A[6][6]=
    {
        {0,6,1,5,INF,INF},
        {6,0,5,INF,3,INF},
        {1,5,0,5,6,4},
        {5,INF,5,0,INF,2},
        {INF,3,6,INF,0,6},
        {INF,INF,4,2,6,0}
    };
    ArrayToMat(A[0], 6, g);
    printf("最小生成树构成:\n");
    Prim(g,0);
    return 0;
}

运行结果

第十三周项目一~~Prim算法的验证和Kruskal算法的验证_第1张图片

知识点总结

普里姆算法中有函数是寻找某一顶点延伸出边的最小权值的,有一条是时刻记录路径的,一定要注意closest函数的用法。

学习心得

此程序相对还是比较容易的。画图很重要。

你可能感兴趣的:(第十三周项目一~~Prim算法的验证和Kruskal算法的验证)