- python学智能算法(七)|KNN邻近算法
西猫雷婶
人工智能python学习笔记算法
【1】引言前述学习进程中,已经了解了一些非常经典的智能算法,相关文章包括且不限于:python学智能算法(三)|模拟退火算法:深层分析_模拟退火动画演示-CSDN博客python学智能算法(四)|遗传算法:原理认识和极大值分析_遗传算法和模拟退火时间复杂度-CSDN博客python学智能算法(五)|差分进化算法:原理认识和极小值分析-CSDN博客python学智能算法(六)|神经网络算法:BP神经
- 浅谈模拟退火
Alaso_shuang
算法分类学习笔记算法
模拟退火简介模拟退火是一种随机化算法。对于一个当前最优解附近的非最优解,爬山算法直接舍去了这个解。而很多情况下,我们需要去接受这个非最优解从而跳出这个局部最优解,即为模拟退火算法。当一个问题的方案数量极大(甚至是无穷的)而且不是一个单峰函数时,常使用模拟退火求解。实现如果新状态的解更优则修改答案,否则以一定概率接受新状态。模拟退火时有三个参数:初始温度T_0,降温系数d,终止温度T_k。是一个比较
- 三种优化算法
旅者时光
算法算法python开发语言
本文将总结遗传算法、粒子群算法、模拟退火三种优化算法的核心思路,并使用python完整实现。实际上,越来越多的优秀算法已经被封装为一个易用的接口。很多时候,一行代码就能实现我们的需求。但了解这些算法的基本逻辑,能够使用最基本的代码实现它。无论对于提升我们的编程能力还是解决问题的能力,都会大有裨益。甚至,改变我们思考问题的方式。1、遗传算法遗传算法,顾名思义,就是借鉴了生物通过遗传变异来逐渐适应环境
- 寻找最优解的算法-模拟退火算法(Simulated Annealing)
搞技术的妹子
算法模拟退火算法人工智能
模拟退火算法(SimulatedAnnealing,简称SA)是一种基于物理退火过程的优化算法。它灵感来源于金属退火过程中的分子运动——在高温下,金属分子的自由度很高,随着温度的逐渐降低,分子排列逐渐有序,最终达到最低能量状态。退火算法通过模拟这一过程,解决复杂的优化问题。在现实生活中,我们经常会遇到寻找最优解的问题,无论是优化路线、调度任务还是调整模型参数。模拟退火算法(SimulatedAnn
- 【人工智能算法】人工智能算法都包括什么?请详细列出和解释
资源存储库
算法强化学习人工智能算法
目录人工智能算法都包括什么?请详细列出和解释1.机器学习算法(MachineLearningAlgorithms)监督学习算法(SupervisedLearning)无监督学习算法(UnsupervisedLearning)强化学习算法(ReinforcementLearning)2.进化算法(EvolutionaryAlgorithms)3.模拟退火(SimulatedAnnealing)4.粒
- ACM算法与竞赛基地:蓝桥备战 --- 二分篇
NONE-C
蓝桥杯算法数据结构
ACM基地:蓝桥备战—二分篇什么是二分?二分是一种搜索策略,类似于高速中学到的梯度下降法,当我们落在某一点是沿着该点斜率,我们可以像最优处移动,二分也是样的策略,但其更加严格,现代算法,如模拟退火,蚁群算法,BP算法针对的都是存在多种最优解,解决的问题也更加宽泛,而作为传统算法的二分,有着更加严格的限制,想要理解二分,必须要对该限制有深刻理解。接下来我们将展开对二分的学习二分查找+二分答案key1
- 机器学习库
Welosthesightof
笔记
机器学习一個很棒的機器學習框架、庫和軟件的精選列表(按語言)。靈感來自於awesome-php。计算机视觉Scikit-Image-Python中图像处理算法的集合。Scikit-Opt-Python中的群智能(Python中的遗传算法、粒子群优化、模拟退火、蚁群算法、免疫算法、人工鱼群算法)SimpleCV-一个开源计算机视觉框架,可以访问多个高性能计算机视觉库,例如OpenCV。用Python
- 机器学习杂记
被自己蠢哭了
深度学习机器学习
过拟合处理方法:早停正则化dropout数据增广避免局部极小值方法:以不同的初始值来训练网络,最终选取最小的。使用模拟退火技术。模拟退火在每一步都以一定的概率接受比当前解更差的结果,从而有助于跳出局部极小。在每一步迭代过程中,接受次优解的概率要随着时间的推移而逐渐降低,从而保证算法稳定。使用随机梯度下降。与标准梯度下降精确计算梯度不同,随机梯度下降算法在计算梯度时加入了随机因素。于是,即使陷入局部
- 2025美赛数学建模C题思路模型代码(1.24第一时间更新)
灿灿数模分号
数学建模
2025美赛数学建模C题思路模型代码(1.24第一时间更新)以下为近十年以来的美赛题目所用的模型算法年份题目研究内容数学模型算法2024年MCMA题研究海洋鳗鲡性别比例与资源可用性的关系,开发模型探讨其优劣势Lotka-Volterra模型、费舍尔性别比例理论、响应曲线模型、蒙特卡洛模拟粒子群优化(PSO)、贝叶斯推断、A*搜索、模拟退火2024年MCMB题定位失踪潜水器,准备搜索设备,确定搜索模
- 2025美赛数学建模C题思路模型代码(1.24第一时间更新)
灿灿数模
数学建模
2025美赛数学建模C题思路模型代码(1.24第一时间更新)以下为近十年以来的美赛题目所用的模型算法年份题目研究内容数学模型算法2024年MCMA题研究海洋鳗鲡性别比例与资源可用性的关系,开发模型探讨其优劣势Lotka-Volterra模型、费舍尔性别比例理论、响应曲线模型、蒙特卡洛模拟粒子群优化(PSO)、贝叶斯推断、A*搜索、模拟退火2024年MCMB题定位失踪潜水器,准备搜索设备,确定搜索模
- 2025美赛数学建模E题思路+模型+代码(1.24第一时间更新),美赛案例分析之模拟退火算法
灿灿数模
人工智能
2025美赛数学建模E题思路+模型+代码(1.24第一时间更新)模拟退火算法是一种随机算法,并不一定能找到全局的最优解,可以比较快的找到问题的近似最优解。如果参数设置得当,模拟退火算法搜索效率比穷举法要高。一.在开始进入正题前,先简单介绍一下物理上的固体退火原理在热力学上,退火(annealing)现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低;够低后,液体开始冷凝与结晶,在结晶状态时
- 2024国赛数学建模-模拟火算法(MATLAB 实现)
V建模忠哥V
2024国赛数学建模算法matlab
模拟退火算法1.1算法原理模拟退火算法的基本思想是从一给定解开始,从邻域中随机产生另一个解,接受Metropolis准则允许目标函数在有限范围内变坏,它由一控制参数t决定,其作用类似于物理过程中的温度T,对于控制参数的每一取值,算法持续进行“产生—判断—接受或舍去”的迭代过程,对应着固体在某一恒定温度下的趋于热平衡的过程,当控制参数逐渐减小并趋于0时,系统越来越趋于平衡态,最后系统状态对应于优化问
- 数学建模强化宝典(7)模拟退火算法
IT 青年
建模强化栈数学建模模拟退火算法编程
前言模拟退火算法(SimulatedAnnealing,SA)是一种基于概率的全局优化算法,它模拟了固体退火过程中的物理现象,通过随机搜索和概率接受机制来寻找问题的全局最优解。以下是对模拟退火算法的详细解析:一、算法起源与背景起源:模拟退火算法的思想最早由N.Metropolis等人在1953年提出,用于研究粒子在金属中的退火过程。1983年,S.Kirkpatrick等人成功地将这一思想引入到组
- matlab模拟退火算法
孺子牛 for world
matlab模拟退火算法开发语言
在MATLAB中实现退火算法(也称为模拟退火算法,SimulatedAnnealing,SA)通常涉及几个关键步骤:初始化系统状态、定义能量函数(或成本函数)、模拟退火过程(包括温度下降和状态转移)、以及判断是否达到停止条件。function[best_state,best_energy]=simulatedAnnealing(initial_state,energyFunction,parame
- matlab实现模拟退火算法
孺子牛 for world
matlab模拟退火算法算法
模拟退火算法(SimulatedAnnealing,SA)是一种通用概率优化算法,用于在给定的大搜索空间内寻找问题的近似全局最优解。该算法灵感来源于物理学中固体物质的退火过程,其中温度逐渐降低,粒子逐渐趋于能量最低状态。在MATLAB中实现模拟退火算法,我们首先需要定义目标函数(即我们需要最小化的能量或成本函数),然后设定算法的参数,如初始温度、降温速率、内循环次数(每个温度下的迭代次数)等。以下
- 退火模拟算法c语言程序,模拟退火算法实例(c++ 与 c# 实现)
weixin_39799825
退火模拟算法c语言程序
此片文章主要参考CSDN博主里头的一篇文章,将自己的理解写下来,以方便后期的查阅。一、C++实现1.已知平面上若干点坐标(xi,yi),求平面上一点p(x,y),到这些点的总距离最小。思路:取所有点的均值为目标点。计算全部点与目标点求差值的和,将目标点以一定系数朝着总和的方向移动,得到新的目标点。//求最小距离//限制条件:10.02)//0.02为温度的下限,若温度为temp达到下限,则停止搜索
- 1723. 完成所有工作的最短时间
luckycoding
深度优先算法
文章目录题意思路代码题意题目链接K个工人,一共jobs个任务,问怎样分配任务,最短的最长工人完成任务完成时间。思路DFS+剪枝(最大单个工人jobs时间超过ans时间;有限空闲工人拿任务)模拟退火dp代码//dfsclassSolution{public:voidsolve(vector&sum,int&ans,vector&jobs,intindex,intused,constint&k,int
- 模拟退火算法
aaa8db431342
学号:17020150083姓名:许学同原文链接:https://blog.csdn.net/weixin_40562999/article/details/80853354【嵌牛导读】著名的模拟退火算法,它是一种基于蒙特卡洛思想设计的近似求解最优化问题的方法。【嵌牛鼻子】模拟退火算法【嵌牛正文】一点历史——如果你不感兴趣,可以跳过美国物理学家N.Metropolis和同仁在1953年发表研究复杂
- 西瓜书-机器学习5.4 全局最小与局部极小
lestat_black
西瓜书机器学习
两种“最优”:“局部极小”(localminimum)和"全局最小"(globalminimum)对和,若存在使得多组不同参数值初始化多个神经网络使用“模拟退火”:以一定的概率接受比当前解更差的结果,有助于“跳出”局部极小使用随机梯度下降遗传算法(geneticalgorithms)[Goldberg,1989]也常用来训练神经网络以上用于跳出局部极小的技术大多是启发式,理论上商缺乏保障。Gold
- 模拟退火算法(Simulated Annealing, SA)
想做后端的前端
人工智能模拟退火算法算法机器学习
一、简介模拟退火算法来源于固体退火原理,是一种基于概率的算法。将固体加温至充分高的温度,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,分子和原子越不稳定。而徐徐冷却时粒子渐趋有序,能量减少,原子越稳定。在冷却(降温)过程中,固体在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标
- NX/UG二次开发—其他—矩形套料(排料)简介
恩·艾克斯·红
NX二次开发矩形套料
算法逻辑排料方法+一定时间内获取近似解的算法看了一些论文和博客,一般排料方法采用最低水平线算法排料,再此基础上增加空余区域填充。然后配合遗传学算法||模拟退火算法||蚁群算法||免疫算法等,在一定时间内求得一组最优解。在最简单的水平线算法排料,采用最简单的变异和交叉,结果如下,伴随调整变异和交叉,明显可以提升速度和材料利用率。接下来准备添加空余区域填充,看一下效果。
- 【优化求解】基于模拟退火算法求解通信网频率规划问题matlab代码
matlab科研助手
1简介本文提出一种基于模拟退火算法的无线通信频率规划方法,将目标要布网的覆盖区域划分为若干个小区,划分后的每个小区设置一个对应的发射基站,而每个基站装载一个广播主信道(BCCH信道),根据无线网络设计规划的要求,可以局部或者整体的选择频率复用模式;利用退火算法算法中各种不同设定约束条件来组合设定目标函数f支配方案,并用干扰综合总值E可用于评估频率指配方案的优劣,最终得出最优的频率支配方案,将其指向
- [GN] DP学习笔记板子
GGood_Name
学习笔记算法
文章目录Bitset滚动数组多重背包区间DP树形dp状压dp模拟退火Bitset使用bitset需要引用头文件。其声明方法为:std::bitsets;(N为s长度)常用函数:b.any()判断b中是否存在值为1的二进制位b.none()判断b中是否不存在值为1的二进制位b.count()判断b中值为1的二进制位个数b.size()判断b中二进制位的个数b[pos]访问b中在pos处的二进制位b.
- 1.23聚类算法(kmeans(初始随机选k,迭代收敛),DBSCAN(dij选点),MEANSHIFT(质心收敛),AGENS(最小生成树)),蚁群算法(参数理解、过程理解、伪代码、代码)
CQU_JIAKE
机器学习&神经网络数学方法数模人工智能算法机器学习启发式算法聚类数学建模
聚类算法聚类结果不变K-meansK值是事先确定好的,是要划分的聚类的数量;初始时随机选择k个点,然后逐渐选择离他最近的点,不断锁定最近的,最后计算方差和;这个是轮流的这个就类似于模拟退火的思想当前聚类下的方差和,也称为簇内方差(within-clustervariance),是一种度量聚类质量的指标。它衡量了簇内数据点与各自簇中心的差异程度。方差和越小,表示簇内的数据点越紧密聚集在一起。计算当前
- 模拟退火算法(SA)优化BP神经网络
树洞优码
模拟退火算法神经网络算法
模拟退火算法(SA)优化BP神经网络模拟退火算法(SA)可以用于优化神经网络中的参数,包括神经网络的权重和偏置。在优化BP神经网络中,SA可以帮助找到更好的权重和偏置的组合,以提高神经网络的性能。在BP神经网络中,SA主要用于调整网络的权重和偏置。通过SA算法,可以在权衡探索和利用的过程中,更有效地搜索到神经网络的参数组合,以降低误差、提高分类准确率或者加速网络收敛。优化BP神经网络实验结果如下:
- 最小圆覆盖算法总结
CCloth
计算几何算法学习算法
一、定义什么是最小圆覆盖?其实和最小矩形覆盖定义是类似的,给出一个点集,求能覆盖住所有点的最小圆。二、两种算法求最小圆覆盖有两种算法,分别是增量法和模拟退火,个人推荐增量法,它的精度更高一些,且时间复杂度是稳定的线性级(点的顺序打乱后),所以下面也主要介绍增量法的原理。增量法前置知识1.圆上三点确定唯一的一个圆。这个道理很简单,考虑三角形外接圆就行。2.若已有某个点集的最小圆覆盖,向该点集中再加入
- 2019-03-28派森学习第129天
每日派森
帮师妹装了一晚上tensorflow,按照自己的前天安装的流程总还会报错,在加上她的电脑特别慢,真无语了!今晚学习一会儿模拟退火算法吧,白天都搜索了,一直没有来的及学习。5种启发式算法:1首先要明白全局最小和全局极小值:2模拟退火算法的基本思想:在每一步都有一定概率接受比当前更差的结果,从而有助于跳出局部极小值,找到全局最小值。算法框图
- 【数学建模】智能算法
自律版光追
数学建模数学建模pythonscikit-learnmatplotlib遗传算法模拟退火算法人工神经网络
文章目录模拟退火算法简介算法流程及应用算法流程算法应用遗传算法遗传算法的原理遗传算法应用模型及算法模型求解人工神经网络概述人工神经元激活函数基本模型感知器BP神经网络RBF神经网络应用智能算法,也称现代优化算法模拟退火算法简介材料统计力学观点:材料中粒子的不同结构对应于粒子的不同能量水平在高温条件下,粒子的能量较高,可以自由运动和重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温
- Matlab|基于改进遗传算法的储能选址定容(可任意设定储能数量)
科研工作站
选址定容matlab储能选址定容优化配置分布式光伏风电
目录主要内容部分代码结果一览(以3个储能为例)下载链接主要内容该模型采用改进遗传算法优化配电网系统中储能选址位置和容量,程序以IEEE33节点系统为分析对象,以网损最小为目标,采用matpower实现系统潮流计算,主要有三个优势:①储能数量可以任意设定,通过【命令行窗口】直接输入储能数量即可;②采用模拟退火改进遗传算法,算法创新性强;③模型增加了分布式光伏和风电,有效拓宽学习思路。程序采用matl
- 模拟退火算法的内循环和外循环
qq_45091396
模拟退火算法算法
模拟退火算法(SimulatedAnnealing)通常具有两个循环,一个外循环和一个内循环。这两个循环的目的是在解空间中搜索全局最优解(或近似最优解)。外循环:外循环主要用来控制模拟退火算法的全局搜索策略。外循环控制温度的下降,温度的下降会影响内循环的行为。外循环通过逐渐减小温度来逐渐减小接受劣解的概率,从而使算法在搜索的早期更加倾向于接受劣解,有助于跳出局部最优解,然后随着温度的下降,减小接受
- jsonp 常用util方法
hw1287789687
jsonpjsonp常用方法jsonp callback
jsonp 常用java方法
(1)以jsonp的形式返回:函数名(json字符串)
/***
* 用于jsonp调用
* @param map : 用于构造json数据
* @param callback : 回调的javascript方法名
* @param filters : <code>SimpleBeanPropertyFilter theFilt
- 多线程场景
alafqq
多线程
0
能不能简单描述一下你在java web开发中需要用到多线程编程的场景?0
对多线程有些了解,但是不太清楚具体的应用场景,能简单说一下你遇到的多线程编程的场景吗?
Java多线程
2012年11月23日 15:41 Young9007 Young9007
4
0 0 4
Comment添加评论关注(2)
3个答案 按时间排序 按投票排序
0
0
最典型的如:
1、
- Maven学习——修改Maven的本地仓库路径
Kai_Ge
maven
安装Maven后我们会在用户目录下发现.m2 文件夹。默认情况下,该文件夹下放置了Maven本地仓库.m2/repository。所有的Maven构件(artifact)都被存储到该仓库中,以方便重用。但是windows用户的操作系统都安装在C盘,把Maven仓库放到C盘是很危险的,为此我们需要修改Maven的本地仓库路径。
- placeholder的浏览器兼容
120153216
placeholder
【前言】
自从html5引入placeholder后,问题就来了,
不支持html5的浏览器也先有这样的效果,
各种兼容,之前考虑,今天测试人员逮住不放,
想了个解决办法,看样子还行,记录一下。
【原理】
不使用placeholder,而是模拟placeholder的效果,
大概就是用focus和focusout效果。
【代码】
<scrip
- debian_用iso文件创建本地apt源
2002wmj
Debian
1.将N个debian-506-amd64-DVD-N.iso存放于本地或其他媒介内,本例是放在本机/iso/目录下
2.创建N个挂载点目录
如下:
debian:~#mkdir –r /media/dvd1
debian:~#mkdir –r /media/dvd2
debian:~#mkdir –r /media/dvd3
….
debian:~#mkdir –r /media
- SQLSERVER耗时最长的SQL
357029540
SQL Server
对于DBA来说,经常要知道存储过程的某些信息:
1. 执行了多少次
2. 执行的执行计划如何
3. 执行的平均读写如何
4. 执行平均需要多少时间
列名 &
- com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil
7454103
eclipse
今天eclipse突然报了com/genuitec/eclipse/j2eedt/core/J2EEProjectUtil 错误,并且工程文件打不开了,在网上找了一下资料,然后按照方法操作了一遍,好了,解决方法如下:
错误提示信息:
An error has occurred.See error log for more details.
Reason:
com/genuitec/
- 用正则删除文本中的html标签
adminjun
javahtml正则表达式去掉html标签
使用文本编辑器录入文章存入数据中的文本是HTML标签格式,由于业务需要对HTML标签进行去除只保留纯净的文本内容,于是乎Java实现自动过滤。
如下:
public static String Html2Text(String inputString) {
String htmlStr = inputString; // 含html标签的字符串
String textSt
- 嵌入式系统设计中常用总线和接口
aijuans
linux 基础
嵌入式系统设计中常用总线和接口
任何一个微处理器都要与一定数量的部件和外围设备连接,但如果将各部件和每一种外围设备都分别用一组线路与CPU直接连接,那么连线
- Java函数调用方式——按值传递
ayaoxinchao
java按值传递对象基础数据类型
Java使用按值传递的函数调用方式,这往往使我感到迷惑。因为在基础数据类型和对象的传递上,我就会纠结于到底是按值传递,还是按引用传递。其实经过学习,Java在任何地方,都一直发挥着按值传递的本色。
首先,让我们看一看基础数据类型是如何按值传递的。
public static void main(String[] args) {
int a = 2;
- ios音量线性下降
bewithme
ios音量
直接上代码吧
//second 几秒内下降为0
- (void)reduceVolume:(int)second {
KGVoicePlayer *player = [KGVoicePlayer defaultPlayer];
if (!_flag) {
_tempVolume = player.volume;
- 与其怨它不如爱它
bijian1013
选择理想职业规划
抱怨工作是年轻人的常态,但爱工作才是积极的心态,与其怨它不如爱它。
一般来说,在公司干了一两年后,不少年轻人容易产生怨言,除了具体的埋怨公司“扭门”,埋怨上司无能以外,也有许多人是因为根本不爱自已的那份工作,工作完全成了谋生的手段,跟自已的性格、专业、爱好都相差甚远。
- 一边时间不够用一边浪费时间
bingyingao
工作时间浪费
一方面感觉时间严重不够用,另一方面又在不停的浪费时间。
每一个周末,晚上熬夜看电影到凌晨一点,早上起不来一直睡到10点钟,10点钟起床,吃饭后玩手机到下午一点。
精神还是很差,下午像一直野鬼在城市里晃荡。
为何不尝试晚上10点钟就睡,早上7点就起,时间完全是一样的,把看电影的时间换到早上,精神好,气色好,一天好状态。
控制让自己周末早睡早起,你就成功了一半。
有多少个工作
- 【Scala八】Scala核心二:隐式转换
bit1129
scala
Implicits work like this: if you call a method on a Scala object, and the Scala compiler does not see a definition for that method in the class definition for that object, the compiler will try to con
- sudoku slover in Haskell (2)
bookjovi
haskellsudoku
继续精简haskell版的sudoku程序,稍微改了一下,这次用了8行,同时性能也提高了很多,对每个空格的所有解不是通过尝试算出来的,而是直接得出。
board = [0,3,4,1,7,0,5,0,0,
0,6,0,0,0,8,3,0,1,
7,0,0,3,0,0,0,0,6,
5,0,0,6,4,0,8,0,7,
- Java-Collections Framework学习与总结-HashSet和LinkedHashSet
BrokenDreams
linkedhashset
本篇总结一下两个常用的集合类HashSet和LinkedHashSet。
它们都实现了相同接口java.util.Set。Set表示一种元素无序且不可重复的集合;之前总结过的java.util.List表示一种元素可重复且有序
- 读《研磨设计模式》-代码笔记-备忘录模式-Memento
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
/*
* 备忘录模式的功能是,在不破坏封装性的前提下,捕获一个对象的内部状态,并在对象之外保存这个状态,为以后的状态恢复作“备忘”
- 《RAW格式照片处理专业技法》笔记
cherishLC
PS
注意,这不是教程!仅记录楼主之前不太了解的
一、色彩(空间)管理
作者建议采用ProRGB(色域最广),但camera raw中设为ProRGB,而PS中则在ProRGB的基础上,将gamma值设为了1.8(更符合人眼)
注意:bridge、camera raw怎么设置显示、输出的颜色都是正确的(会读取文件内的颜色配置文件),但用PS输出jpg文件时,必须先用Edit->conv
- 使用 Git 下载 Spring 源码 编译 for Eclipse
crabdave
eclipse
使用 Git 下载 Spring 源码 编译 for Eclipse
1、安装gradle,下载 http://www.gradle.org/downloads
配置环境变量GRADLE_HOME,配置PATH %GRADLE_HOME%/bin,cmd,gradle -v
2、spring4 用jdk8 下载 https://jdk8.java.
- mysql连接拒绝问题
daizj
mysql登录权限
mysql中在其它机器连接mysql服务器时报错问题汇总
一、[running]root@192.168.9.136:~$mysql -uroot -h 192.168.9.108 -p //带-p参数,在下一步进行密码输入
Enter password: //无字符串输入
ERROR 1045 (28000): Access
- Google Chrome 为何打压 H.264
dsjt
applehtml5chromeGoogle
Google 今天在 Chromium 官方博客宣布由于 H.264 编解码器并非开放标准,Chrome 将在几个月后正式停止对 H.264 视频解码的支持,全面采用开放的 WebM 和 Theora 格式。
Google 在博客上表示,自从 WebM 视频编解码器推出以后,在性能、厂商支持以及独立性方面已经取得了很大的进步,为了与 Chromium 现有支持的編解码器保持一致,Chrome
- yii 获取控制器名 和方法名
dcj3sjt126com
yiiframework
1. 获取控制器名
在控制器中获取控制器名: $name = $this->getId();
在视图中获取控制器名: $name = Yii::app()->controller->id;
2. 获取动作名
在控制器beforeAction()回调函数中获取动作名: $name =
- Android知识总结(二)
come_for_dream
android
明天要考试了,速速总结如下
1、Activity的启动模式
standard:每次调用Activity的时候都创建一个(可以有多个相同的实例,也允许多个相同Activity叠加。)
singleTop:可以有多个实例,但是不允许多个相同Activity叠加。即,如果Ac
- 高洛峰收徒第二期:寻找未来的“技术大牛” ——折腾一年,奖励20万元
gcq511120594
工作项目管理
高洛峰,兄弟连IT教育合伙人、猿代码创始人、PHP培训第一人、《细说PHP》作者、软件开发工程师、《IT峰播》主创人、PHP讲师的鼻祖!
首期现在的进程刚刚过半,徒弟们真的很棒,人品都没的说,团结互助,学习刻苦,工作认真积极,灵活上进。我几乎会把他们全部留下来,现在已有一多半安排了实际的工作,并取得了很好的成绩。等他们出徒之日,凭他们的能力一定能够拿到高薪,而且我还承诺过一个徒弟,当他拿到大学毕
- linux expect
heipark
expect
1. 创建、编辑文件go.sh
#!/usr/bin/expect
spawn sudo su admin
expect "*password*" { send "13456\r\n" }
interact
2. 设置权限
chmod u+x go.sh 3.
- Spring4.1新特性——静态资源处理增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- idea ubuntuxia 乱码
liyonghui160com
1.首先需要在windows字体目录下或者其它地方找到simsun.ttf 这个 字体文件。
2.在ubuntu 下可以执行下面操作安装该字体:
sudo mkdir /usr/share/fonts/truetype/simsun
sudo cp simsun.ttf /usr/share/fonts/truetype/simsun
fc-cache -f -v
- 改良程序的11技巧
pda158
技巧
有很多理由都能说明为什么我们应该写出清晰、可读性好的程序。最重要的一点,程序你只写一次,但以后会无数次的阅读。当你第二天回头来看你的代码 时,你就要开始阅读它了。当你把代码拿给其他人看时,他必须阅读你的代码。因此,在编写时多花一点时间,你会在阅读它时节省大量的时间。
让我们看一些基本的编程技巧:
尽量保持方法简短
永远永远不要把同一个变量用于多个不同的
- 300个涵盖IT各方面的免费资源(下)——工作与学习篇
shoothao
创业免费资源学习课程远程工作
工作与生产效率:
A. 背景声音
Noisli:背景噪音与颜色生成器。
Noizio:环境声均衡器。
Defonic:世界上任何的声响都可混合成美丽的旋律。
Designers.mx:设计者为设计者所准备的播放列表。
Coffitivity:这里的声音就像咖啡馆里放的一样。
B. 避免注意力分散
Self Co
- 深入浅出RPC
uule
rpc
深入浅出RPC-浅出篇
深入浅出RPC-深入篇
RPC
Remote Procedure Call Protocol
远程过程调用协议
它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。RPC协议假定某些传输协议的存在,如TCP或UDP,为通信程序之间携带信息数据。在OSI网络通信模型中,RPC跨越了传输层和应用层。RPC使得开发