从前我们的Java代码因为一些原因使用了HashMap这个东西,但是当时的程序是单线程的,一切都没有问题。后来,我们的程序性能有问题,所以需要变成多线程的,于是,变成多线程后到了线上,发现程序经常占了100%的CPU,查看堆栈,你会发现程序都Hang在了HashMap.get()这个方法上了,重启程序后问题消失。但是过段时间又会来。而且,这个问题在测试环境里可能很难重现。
我们简单的看一下我们自己的代码,我们就知道HashMap被多个线程操作。而Java的文档说HashMap是非线程安全的,应该用ConcurrentHashMap。
但是在这里我们可以来研究一下原因。
我需要简单地说一下HashMap这个经典的数据结构。
HashMap通常会用一个指针数组(假设为table[])来做分散所有的key,当一个key被加入时,会通过Hash算法通过key算出这个数组的下标i,然后就把这个<key, value>插到table[i]中,如果有两个不同的key被算在了同一个i,那么就叫冲突,又叫碰撞,这样会在table[i]上形成一个链表。
我们知道,如果table[]的尺寸很小,比如只有2个,如果要放进10个keys的话,那么碰撞非常频繁,于是一个O(1)的查找算法,就变成了链表遍历,性能变成了O(n),这是Hash表的缺陷(可参看《Hash Collision DoS 问题》)。
所以,Hash表的尺寸和容量非常的重要。一般来说,Hash表这个容器当有数据要插入时,都会检查容量有没有超过设定的thredhold,如果超过,需要增大Hash表的尺寸,但是这样一来,整个Hash表里的元素都需要被重算一遍。这叫rehash,这个成本相当的大。
相信大家对这个基础知识已经很熟悉了。
下面,我们来看一下Java的HashMap的源代码。
Put一个Key,Value对到Hash表中:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
public
V put(K key, V value)
{
......
//算Hash值
int
hash = hash(key.hashCode());
int
i = indexFor(hash, table.length);
//如果该key已被插入,则替换掉旧的value (链接操作)
for
(Entry<K,V> e = table[i]; e !=
null
; e = e.next) {
Object k;
if
(e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(
this
);
return
oldValue;
}
}
modCount++;
//该key不存在,需要增加一个结点
addEntry(hash, key, value, i);
return
null
;
}
|
检查容量是否超标
1
2
3
4
5
6
7
8
|
void
addEntry(
int
hash, K key, V value,
int
bucketIndex)
{
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] =
new
Entry<K,V>(hash, key, value, e);
//查看当前的size是否超过了我们设定的阈值threshold,如果超过,需要resize
if
(size++ >= threshold)
resize(
2
* table.length);
}
|
新建一个更大尺寸的hash表,然后把数据从老的Hash表中迁移到新的Hash表中。
1
2
3
4
5
6
7
8
9
10
11
12
|
void
resize(
int
newCapacity)
{
Entry[] oldTable = table;
int
oldCapacity = oldTable.length;
......
//创建一个新的Hash Table
Entry[] newTable =
new
Entry[newCapacity];
//将Old Hash Table上的数据迁移到New Hash Table上
transfer(newTable);
table = newTable;
threshold = (
int
)(newCapacity * loadFactor);
}
|
迁移的源代码,注意高亮处:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
void
transfer(Entry[] newTable)
{
Entry[] src = table;
int
newCapacity = newTable.length;
// 下面这段代码的意思是:
// 从OldTable里摘一个元素出来,然后放到NewTable中
for
(
int
j =
0
; j < src.length; j++) {
Entry<K,V> e = src[j];
if
(e !=
null
) {
src[j] =
null
;
do
{
Entry<K,V> next = e.next;
int
i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
while
(e !=
null
);
}
}
}
|
好了,这个代码算是比较正常的。而且没有什么问题。
画了个图做了个演示。
1)假设我们有两个线程。我用红色和浅蓝色标注了一下。
我们再回头看一下我们的 transfer代码中的这个细节:
1
2
3
4
5
6
7
|
do
{
Entry<K,V> next = e.next;
// <--假设线程一执行好这里就被调度挂起了
int
i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
while
(e !=
null
);
|
而我们的线程二执行完成了。于是我们有下面的这个样子。
注意,因为Thread1的 e 指向了key(3),而next指向了key(7),其在线程二rehash后,指向了线程二重组后的链表。我们可以看到链表的顺序被反转后。
2)线程一被调度回来执行。
3)一切安好。
线程一接着工作。把key(7)摘下来,放到newTable[i]的第一个,然后把e和next往下移。
4)环形链接出现。
e.next = newTable[i] 导致 key(3).next 指向了 key(7)
注意:此时的key(7).next 已经指向了key(3), 环形链表就这样出现了。
于是,当我们的线程一调用到,HashTable.get(11)时,悲剧就出现了——Infinite Loop。
此时两个线程put完毕,线程二先完成rehash,之后再线程一rehash,线程一最终put的链形成了闭环,但是这两个线程没有死循环,只是后来get的线程如果进入这个闭环链,就死循环了,并且进入的线程越多,CPU消耗的越大,最终到达100%