背景建模或前景检测(Background Generation And Foreground Detection) 一

转自:http://www.cnblogs.com/xrwang/archive/2010/02/21/ForegroundDetection.html

作者:王先荣

前言
    在很多情况下,我们需要从一段视频或者一系列图片中找到感兴趣的目标,比如说当人进入已经打烊的超市时发出警报。为了达到这个目的,我们首先需要“学习”背景模型,然后将背景模型和当前图像进行比较,从而得到前景目标。

背景建模或前景检测(Background Generation And Foreground Detection) 一_第1张图片

背景建模
    背景与前景都是相对的概念,以高速公路为例:有时我们对高速公路上来来往往的汽车感兴趣,这时汽车是前景,而路面以及周围的环境是背景;有时我们仅仅对闯入高速公路的行人感兴趣,这时闯入者是前景,而包括汽车之类的其他东西又成了背景。背景建模的方式很多,或高级或简单。不过各种背景模型都有自己适用的场合,即使是高级的背景模型也不能适用于任何场合。下面我将逐一介绍OpenCv中已经实现,或者在《学习OpenCv》这本书中介绍的背景建模方法。
1.帧差
    帧差可说是最简单的一种背景模型,指定视频中的一幅图像为背景,用当前帧与背景进行比较,根据需要过滤较小的差异,得到的结果就是前景了。OpenCv中为我们提供了一种动态计算阀值,然后用帧差进行前景检测的函数——cvChangeDetection(注:EmguCv中没有封装cvChangeDetection,我将其声明到OpenCvInvoke类中,具体实现见文末代码)。而通过对两幅图像使用减法运算,然后再用指定阀值过滤的方法在《学习OpenCv》一书中有详细的介绍。它们的实现代码如下:

帧差:

            [DllImport("cvaux200.dll")]
            public static extern void cvChangeDetection(IntPtr prev_frame, IntPtr curr_frame, IntPtr change_mask);
            //backgroundMask为背景,imageBackgroundModel为背景模型,currentFrame为当前帧
            if (backgroundMask == null)
                backgroundMask = new Image<Gray, byte>(imageBackgroundModel.Size);
            if (threshold == 0d)
                //如果阀值为0,使用OpenCv中的自适应动态背景检测
                OpenCvInvoke.cvChangeDetection(imageBackgroundModel.Ptr, currentFrame.Ptr, backgroundMask.Ptr);
            else
            {
                //如果设置了阀值,使用帧差
                Image<TColor, Byte> imageTemp = imageBackgroundModel.AbsDiff(currentFrame);
                Image<Gray, Byte>[] images = imageTemp.Split();
                backgroundMask.SetValue(0d);
                foreach (Image<Gray, Byte> image in images)
                    backgroundMask._Or(image.ThresholdBinary(new Gray(threshold), new Gray(255d)));
            }
            backgroundMask._Not();

对于类似无人值守的仓库防盗之类的场合,使用帧差效果估计很好。


2.背景统计模型
    背景统计模型是:对一段时间的背景进行统计,然后计算其统计数据(例如平均值、平均差分、标准差、均值漂移值等等),将统计数据作为背景的方法。OpenCv中并未实现简单的背景统计模型,不过在《学习OpenCv》中对其中的平均背景统计模型有很详细的介绍。在模仿该算法的基础上,我实现了一系列的背景统计模型,包括:平均背景、均值漂移、标准差和标准协方差。对这些统计概念我其实不明白,在维基百科上看了好半天 -_-
调用背景统计模型很简单,只需4步而已:

//(1)初始化对象
BackgroundStatModelBase<Bgr> bgModel = new BackgroundStatModelBase<Bgr>(BackgroundStatModelType.AccAvg);
//(2)更新一段时间的背景图像,视情况反复调用(2)
bgModel.Update(image);
//(3)设置当前帧
bgModel.CurrentFrame = currentFrame;
//(4)得到背景或者前景
Image<Gray,Byte> imageForeground = bgModel.ForegroundMask;

背景统计模型的实现代码如下:

/*
背景统计模型
作者:王先荣
时间:2010年2月19日
*/
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Drawing;
using System.Diagnostics;
using System.Runtime.InteropServices;
using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.Structure;
using Emgu.CV.UI;
using Emgu.CV.VideoSurveillance;

namespace ImageProcessLearn
{
    //背景模型接口,在IBGFGDetector接口的基础上增加了一个CurrentFrame属性
    public interface IBackgroundStatModel<TColor> : IDisposable
        where TColor : struct, IColor
    {
        /// <summary>
        /// 获取前景
        /// </summary>
        Image<Gray, byte> BackgroundMask { get; }

        /// <summary>
        /// 获取背景
        /// </summary>
        Image<Gray, byte> ForegroundMask { get; }

        /// <summary>
        /// 更新背景模型
        /// </summary>
        /// <param name="image"></param>
        void Update(Image<TColor, byte> image);

        /// <summary>
        /// 计算统计数据
        /// </summary>
        void CalcStatData();

        /// <summary>
        /// 获取或者设置当前帧
        /// </summary>
        Image<TColor, Byte> CurrentFrame
        {
            get;
            set;
        }
    }

    /// <summary>
    /// 使用帧差的方式来建立背景模型
    /// </summary>
    /// <typeparam name="TColor"></typeparam>
    public class BackgroundStatModelFrameDiff<TColor> : IBackgroundStatModel<TColor>
        where TColor : struct, IColor
    {
        //成员
        private Image<TColor, Byte> imageBackgroundModel;   //背景模型图像
        private Image<TColor, Byte> currentFrame;           //当前帧
        private double threshold;                           //计算前景时所用的阀值,如果当前帧和背景的差别大于阀值,则被认为是前景
        private Image<Gray, Byte> backgroundMask;           //计算得到的背景图像

        /// <summary>
        /// 构造函数
        /// </summary>
        /// <param name="image">用于背景统计模型的背景</param>
        public BackgroundStatModelFrameDiff(Image<TColor, Byte> image)
        {
            imageBackgroundModel = image;
            currentFrame = null;
            threshold = 15d;
            backgroundMask = null;
        }

        public BackgroundStatModelFrameDiff()
            : this(null)
        {
        }

        /// <summary>
        /// 设置或者获取计算前景时所用的阀值;如果阀值为0,则使用自适应的阀值
        /// </summary>
        public double Threshold
        {
            get
            {
                return threshold;
            }
            set
            {
                threshold = value >= 0 ? value : 15d;
            }
        }

        /// <summary>
        /// 更新背景模型
        /// </summary>
        /// <param name="image"></param>
        public void Update(Image<TColor, Byte> image)
        {
            imageBackgroundModel = image;
        }

        /// <summary>
        /// 获取或者设置当前帧
        /// </summary>
        public Image<TColor, Byte> CurrentFrame
        {
            get
            {
                return currentFrame;
            }
            set
            {
                currentFrame = value;
                CalcBackgroundMask();
            }
        }

        /// <summary>
        /// 计算统计数据
        /// </summary>
        public void CalcStatData()
        {
        }

        /// <summary>
        /// 计算背景
        /// </summary>
        private void CalcBackgroundMask()
        {
            if (imageBackgroundModel == null || currentFrame == null || imageBackgroundModel.Size != currentFrame.Size)
                throw new ArgumentException("在计算背景时发现参数错误。可能是:背景模型图像为空,当前帧为空,或者背景模型图像和当前帧的尺寸不一致。");
            if (backgroundMask == null)
                backgroundMask = new Image<Gray, byte>(imageBackgroundModel.Size);
            if (threshold == 0d)
                //如果阀值为0,使用OpenCv中的自适应动态背景检测
                OpenCvInvoke.cvChangeDetection(imageBackgroundModel.Ptr, currentFrame.Ptr, backgroundMask.Ptr);
            else
            {
                //如果设置了阀值,使用帧差
                Image<TColor, Byte> imageTemp = imageBackgroundModel.AbsDiff(currentFrame);
                Image<Gray, Byte>[] images = imageTemp.Split();
                backgroundMask.SetValue(0d);
                foreach (Image<Gray, Byte> image in images)
                    backgroundMask._Or(image.ThresholdBinary(new Gray(threshold), new Gray(255d)));
            }
            backgroundMask._Not();
        }

        /// <summary>
        /// 获取背景
        /// </summary>
        public Image<Gray, Byte> BackgroundMask
        {
            get
            {
                return backgroundMask;
            }
        }

        /// <summary>
        /// 获取前景
        /// </summary>
        public Image<Gray, Byte> ForegroundMask
        {
            get
            {
                return backgroundMask.Not();
            }
        }

        /// <summary>
        /// 释放资源
        /// </summary>
        public void Dispose()
        {
            if (backgroundMask != null)
                backgroundMask.Dispose();
        }
    }

    /// <summary>
    /// 使用平均背景来建立背景模型
    /// </summary>
    /// <typeparam name="TColor"></typeparam>
    public class BackgroundStatModelAccAvg<TColor> : IBackgroundStatModel<TColor>
        where TColor : struct, IColor
    {
        //成员
        private Image<TColor, Single> imageAccSum;          //累计图像
        private Image<TColor, Single> imageAccDiff;         //累计差值图像
        private int frameCount;                             //已经累计的背景帧数
        private Image<TColor, Single> previousFrame;        //在背景建模时使用的前一帧图像
        private Image<TColor, Byte> currentFrame;           //当前帧图像
        private double scale;                               //计算背景时所使用的缩放系数,大于平均值*scale倍数的像素认为是前景
        private Image<Gray, Byte> backgroundMask;           //计算得到的背景图像
        private Image<TColor, Single> imageTemp;            //临时图像
        private bool isStatDataReady;                       //是否已经准备好统计数据
        private Image<Gray, Single>[] imagesHi;             //背景模型中各通道的最大值图像
        private Image<Gray, Single>[] imagesLow;            //背景模型中各通道的最小值图像

        /// <summary>
        /// 构造函数
        /// </summary>
        public BackgroundStatModelAccAvg()
        {
            imageAccSum = null;
            imageAccDiff = null;
            frameCount = 0;
            previousFrame = null;
            currentFrame = null;
            scale = 6d;
            backgroundMask = null;
            isStatDataReady = false;
            imagesHi = null;
            imagesLow = null;
        }

        /// <summary>
        /// 设置或者获取计算前景时所用的阀值
        /// </summary>
        public double Scale
        {
            get
            {
                return scale;
            }
            set
            {
                scale = value > 0 ? value : 6d;
            }
        }

        /// <summary>
        /// 更新背景模型
        /// </summary>
        /// <param name="image"></param>
        public void Update(Image<TColor, Byte> image)
        {
            if (frameCount==0)
            {
                imageAccSum = new Image<TColor, Single>(image.Size);
                imageAccSum.SetValue(0d);
                imageAccDiff = new Image<TColor, float>(image.Size);
                imageAccDiff.SetValue(0d);
            }
            imageTemp = image.ConvertScale<Single>(1d, 0d); //将图像转换成浮点型
            imageAccSum.Acc(imageTemp);
            if (previousFrame != null)
                imageAccDiff.Acc(imageTemp.AbsDiff(previousFrame));
            previousFrame = imageTemp.Copy();
            frameCount++;
        }

        /// <summary>
        /// 获取或者设置当前帧
        /// </summary>
        public Image<TColor, Byte> CurrentFrame
        {
            get
            {
                return currentFrame;
            }
            set
            {
                currentFrame = value;
                CalcBackgroundMask();
            }
        }

        /// <summary>
        /// 计算统计数据
        /// </summary>
        public void CalcStatData()
        {
            //计算出最高及最低阀值图像
            Image<TColor, Single> imageAvg = imageAccSum.ConvertScale<Single>(1d / frameCount, 0d);
            Image<TColor, Single> imageAvgDiff = imageAccDiff.ConvertScale<Single>(1d / frameCount, 1d);    //将平均值加1,为了确保总是存在差异
            Image<TColor, Single> imageHi = imageAvg.Add(imageAvgDiff.ConvertScale<Single>(scale, 0d));
            Image<TColor, Single> imageLow = imageAvg.Sub(imageAvgDiff.ConvertScale<Single>(scale, 0d));
            imagesHi = imageHi.Split();
            imagesLow = imageLow.Split();
            isStatDataReady = true;
            //释放资源
            imageAvg.Dispose();
            imageAvgDiff.Dispose();
            imageHi.Dispose();
            imageLow.Dispose();
        }

        /// <summary>
        /// 计算背景
        /// </summary>
        private void CalcBackgroundMask()
        {
            if (imageAccSum == null || imageAccDiff == null || imageAccSum.Size != currentFrame.Size)
                throw new ArgumentException("在计算背景时发生参数错误。可能是:还没有建立背景模型;或者当前帧的尺寸与背景尺寸不一致。");
            if (!isStatDataReady)
                CalcStatData();
            imageTemp = currentFrame.ConvertScale<Single>(1d, 0d);
            Image<Gray, Single>[] images = imageTemp.Split();
            //计算背景图像
            if (backgroundMask == null)
                backgroundMask = new Image<Gray, byte>(currentFrame.Size);
            backgroundMask.SetZero();
            for (int i = 0; i < currentFrame.NumberOfChannels; i++)
                backgroundMask._Or(images[i].InRange(imagesLow[i], imagesHi[i]));
            //释放资源
            for (int i = 0; i < images.Length; i++)
                images[i].Dispose();
        }

        /// <summary>
        /// 获取背景
        /// </summary>
        public Image<Gray, Byte> BackgroundMask
        {
            get
            {
                return backgroundMask;
            }
        }

        /// <summary>
        /// 获取前景
        /// </summary>
        public Image<Gray, Byte> ForegroundMask
        {
            get
            {
                return backgroundMask.Not();
            }
        }

        /// <summary>
        /// 释放资源
        /// </summary>
        public void Dispose()
        {
            if (imageAccSum != null)
                imageAccSum.Dispose();
            if (imageAccDiff != null)
                imageAccDiff.Dispose();
            if (previousFrame != null)
                previousFrame.Dispose();
            if (currentFrame != null)
                currentFrame.Dispose();
            if (backgroundMask != null)
                backgroundMask.Dispose();
            if (isStatDataReady)
            {
                for (int i = 0; i < imagesHi.Length; i++)
                {
                    imagesHi[i].Dispose();
                    imagesLow[i].Dispose();
                }
            }
        }
    }

    /// <summary>
    /// 使用均值漂移来建立背景模型
    /// </summary>
    /// <typeparam name="TColor"></typeparam>
    public class BackgroundStatModelRunningAvg<TColor> : IBackgroundStatModel<TColor>
        where TColor : struct, IColor
    {
        //成员
        private Image<TColor, Single> imageAcc;             //累计图像
        private Image<TColor, Single> imageAccDiff;         //累计差值图像
        private int frameCount;                             //已经累计的背景帧数
        private Image<TColor, Single> previousFrame;        //在背景建模时使用的前一帧图像
        private Image<TColor, Byte> currentFrame;           //当前帧图像
        private double scale;                               //计算背景时所使用的缩放系数,大于平均值*scale倍数的像素认为是前景
        private double alpha;                               //计算均值漂移时使用的权值
        private Image<Gray, Byte> backgroundMask;           //计算得到的背景图像
        private Image<TColor, Single> imageTemp;            //临时图像
        private bool isStatDataReady;                       //是否已经准备好统计数据
        private Image<Gray, Single>[] imagesHi;             //背景模型中各通道的最大值图像
        private Image<Gray, Single>[] imagesLow;            //背景模型中各通道的最小值图像

        /// <summary>
        /// 构造函数
        /// </summary>
        public BackgroundStatModelRunningAvg()
        {
            imageAcc = null;
            imageAccDiff = null;
            frameCount = 0;
            previousFrame = null;
            currentFrame = null;
            scale = 6d;
            alpha = 0.5d;
            backgroundMask = null;
            isStatDataReady = false;
            imagesHi = null;
            imagesLow = null;
        }

        /// <summary>
        /// 设置或者获取计算前景时所用的阀值
        /// </summary>
        public double Scale
        {
            get
            {
                return scale;
            }
            set
            {
                scale = value > 0 ? value : 6d;
            }
        }

        /// <summary>
        /// 设置或者获取计算均值漂移是使用的权值
        /// </summary>
        public double Alpha
        {
            get
            {
                return alpha;
            }
            set
            {
                alpha = value > 0 && value < 1 ? value : 0.5d;
            }
        }

        /// <summary>
        /// 更新背景模型
        /// </summary>
        /// <param name="image"></param>
        public void Update(Image<TColor, Byte> image)
        {
            imageTemp = image.ConvertScale<Single>(1d, 0d); //将图像转换成浮点型
            if (imageAcc == null)
            {
                imageAcc = imageTemp.Copy();
            }
            else
                imageAcc.RunningAvg(imageTemp, alpha);
            if (previousFrame != null)
            {
                if (imageAccDiff == null)
                    imageAccDiff = imageTemp.AbsDiff(previousFrame);
                else
                    imageAccDiff.RunningAvg(imageTemp.AbsDiff(previousFrame), alpha);
            }
            previousFrame = imageTemp.Copy();
            frameCount++;
        }

        /// <summary>
        /// 获取或者设置当前帧
        /// </summary>
        public Image<TColor, Byte> CurrentFrame
        {
            get
            {
                return currentFrame;
            }
            set
            {
                currentFrame = value;
                CalcBackgroundMask();
            }
        }

        /// <summary>
        /// 计算统计数据
        /// </summary>
        public void CalcStatData()
        {
            //计算出最高及最低阀值图像
            Image<TColor, Single> imageHi = imageAcc.Add(imageAccDiff.ConvertScale<Single>(scale, 0d));
            Image<TColor, Single> imageLow = imageAcc.Sub(imageAccDiff.ConvertScale<Single>(scale, 0d));
            imagesHi = imageHi.Split();
            imagesLow = imageLow.Split();
            isStatDataReady = true;
            //释放资源
            imageHi.Dispose();
            imageLow.Dispose();
        }

        /// <summary>
        /// 计算背景
        /// </summary>
        private void CalcBackgroundMask()
        {
            if (imageAcc == null || imageAccDiff == null || imageAcc.Size != currentFrame.Size)
                throw new ArgumentException("在计算背景时发生参数错误。可能是:还没有建立背景模型;或者当前帧的尺寸与背景尺寸不一致。");
            if (!isStatDataReady)
                CalcStatData();
            imageTemp = currentFrame.ConvertScale<Single>(1d, 0d);
            Image<Gray, Single>[] images = imageTemp.Split();
            //计算背景图像
            if (backgroundMask == null)
                backgroundMask = new Image<Gray, byte>(currentFrame.Size);
            backgroundMask.SetZero();
            for (int i = 0; i < currentFrame.NumberOfChannels; i++)
                backgroundMask._Or(images[i].InRange(imagesLow[i], imagesHi[i]));
            //释放资源
            for (int i = 0; i < images.Length; i++)
                images[i].Dispose();
        }

        /// <summary>
        /// 获取背景
        /// </summary>
        public Image<Gray, Byte> BackgroundMask
        {
            get
            {
                return backgroundMask;
            }
        }

        /// <summary>
        /// 获取前景
        /// </summary>
        public Image<Gray, Byte> ForegroundMask
        {
            get
            {
                return backgroundMask.Not();
            }
        }

        /// <summary>
        /// 释放资源
        /// </summary>
        public void Dispose()
        {
            if (imageAcc != null)
                imageAcc.Dispose();
            if (imageAccDiff != null)
                imageAccDiff.Dispose();
            if (previousFrame != null)
                previousFrame.Dispose();
            if (currentFrame != null)
                currentFrame.Dispose();
            if (backgroundMask != null)
                backgroundMask.Dispose();
            if (isStatDataReady)
            {
                for (int i = 0; i < imagesHi.Length; i++)
                {
                    imagesHi[i].Dispose();
                    imagesLow[i].Dispose();
                }
            }
        }
    }

    /// <summary>
    /// 使用标准方差来建立背景模型
    /// </summary>
    /// <typeparam name="TColor"></typeparam>
    public class BackgroundStatModelSquareAcc<TColor> : IBackgroundStatModel<TColor>
        where TColor : struct, IColor
    {
        //成员
        private Image<TColor, Single> imageAccSum;          //累计图像
        private Image<TColor, Single> imageAccSquare;       //累计平方图像
        private int frameCount;                             //已经累计的背景帧数
        private Image<TColor, Single> previousFrame;        //在背景建模时使用的前一帧图像
        private Image<TColor, Byte> currentFrame;           //当前帧图像
        private double scale;                               //计算背景时所使用的缩放系数,大于平均值*scale倍数的像素认为是前景
        private Image<Gray, Byte> backgroundMask;           //计算得到的背景图像
        private Image<TColor, Single> imageTemp;            //临时图像
        private bool isStatDataReady;                       //是否已经准备好统计数据
        private Image<Gray, Single>[] imagesHi;             //背景模型中各通道的最大值图像
        private Image<Gray, Single>[] imagesLow;            //背景模型中各通道的最小值图像

        /// <summary>
        /// 构造函数
        /// </summary>
        public BackgroundStatModelSquareAcc()
        {
            imageAccSum = null;
            imageAccSquare = null;
            frameCount = 0;
            previousFrame = null;
            currentFrame = null;
            scale = 6d;
            backgroundMask = null;
            isStatDataReady = false;
            imagesHi = null;
            imagesLow = null;
        }

        /// <summary>
        /// 设置或者获取计算前景时所用的阀值
        /// </summary>
        public double Scale
        {
            get
            {
                return scale;
            }
            set
            {
                scale = value > 0 ? value : 6d;
            }
        }

        /// <summary>
        /// 更新背景模型
        /// </summary>
        /// <param name="image"></param>
        public void Update(Image<TColor, Byte> image)
        {
            if (frameCount == 0)
            {
                imageAccSum = new Image<TColor, Single>(image.Size);
                imageAccSum.SetZero();
                imageAccSquare = new Image<TColor, float>(image.Size);
                imageAccSquare.SetZero();
            }
            imageTemp = image.ConvertScale<Single>(1d, 0d); //将图像转换成浮点型
            imageAccSum.Acc(imageTemp);
            CvInvoke.cvSquareAcc(imageTemp.Ptr, imageAccSquare.Ptr, IntPtr.Zero);
            previousFrame = imageTemp.Copy();
            frameCount++;
        }

        /// <summary>
        /// 获取或者设置当前帧
        /// </summary>
        public Image<TColor, Byte> CurrentFrame
        {
            get
            {
                return currentFrame;
            }
            set
            {
                currentFrame = value;
                CalcBackgroundMask();
            }
        }

        /// <summary>
        /// 计算统计数据
        /// </summary>
        public void CalcStatData()
        {
            //计算出标准差、最高及最低阀值图像
            Image<TColor, Single> imageAvg = imageAccSum.ConvertScale<Single>(1d / frameCount, 0d);
            Image<TColor, Single> imageSd = imageAccSquare.ConvertScale<Single>(1d / frameCount, 0d);
            imageSd.Sub(imageAvg.Pow(2d));
            imageSd = imageSd.Pow(0.5d);
            Image<TColor, Single> imageHi = imageAvg.Add(imageSd.ConvertScale<Single>(scale, 0d));
            Image<TColor, Single> imageLow = imageAvg.Sub(imageSd.ConvertScale<Single>(scale, 0d));
            imagesHi = imageHi.Split();
            imagesLow = imageLow.Split();
            isStatDataReady = true;
            //释放资源
            imageAvg.Dispose();
            imageSd.Dispose();
            imageHi.Dispose();
            imageLow.Dispose();
        }

        /// <summary>
        /// 计算背景
        /// </summary>
        private void CalcBackgroundMask()
        {
            if (imageAccSum == null || imageAccSquare == null || imageAccSum.Size != currentFrame.Size)
                throw new ArgumentException("在计算背景时发生参数错误。可能是:还没有建立背景模型;或者当前帧的尺寸与背景尺寸不一致。");
            if (!isStatDataReady)
                CalcStatData();
            imageTemp = currentFrame.ConvertScale<Single>(1d, 0d);
            Image<Gray, Single>[] images = imageTemp.Split();
            //计算背景图像
            if (backgroundMask == null)
                backgroundMask = new Image<Gray, byte>(currentFrame.Size);
            backgroundMask.SetZero();
            for (int i = 0; i < currentFrame.NumberOfChannels; i++)
                backgroundMask._Or(images[i].InRange(imagesLow[i], imagesHi[i]));
            //释放资源
            for (int i = 0; i < images.Length; i++)
                images[i].Dispose();
        }

        /// <summary>
        /// 获取背景
        /// </summary>
        public Image<Gray, Byte> BackgroundMask
        {
            get
            {
                return backgroundMask;
            }
        }

        /// <summary>
        /// 获取前景
        /// </summary>
        public Image<Gray, Byte> ForegroundMask
        {
            get
            {
                return backgroundMask.Not();
            }
        }

        /// <summary>
        /// 释放资源
        /// </summary>
        public void Dispose()
        {
            if (imageAccSum != null)
                imageAccSum.Dispose();
            if (imageAccSquare != null)
                imageAccSquare.Dispose();
            if (previousFrame != null)
                previousFrame.Dispose();
            if (currentFrame != null)
                currentFrame.Dispose();
            if (backgroundMask != null)
                backgroundMask.Dispose();
            if (isStatDataReady)
            {
                for (int i = 0; i < imagesHi.Length; i++)
                {
                    imagesHi[i].Dispose();
                    imagesLow[i].Dispose();
                }
            }
        }
    }

    /// <summary>
    /// 使用标准协方差来建立背景模型
    /// </summary>
    /// <typeparam name="TColor"></typeparam>
    public class BackgroundStatModelMultiplyAcc<TColor> : IBackgroundStatModel<TColor>
        where TColor : struct, IColor
    {
        //成员
        private Image<TColor, Single> imageAccSum;          //累计图像
        private Image<TColor, Single> imageAccMultiply;     //累计平方图像
        private int frameCount;                             //已经累计的背景帧数
        private Image<TColor, Single> previousFrame;        //在背景建模时使用的前一帧图像
        private Image<TColor, Byte> currentFrame;           //当前帧图像
        private double scale;                               //计算背景时所使用的缩放系数,大于平均值*scale倍数的像素认为是前景
        private Image<Gray, Byte> backgroundMask;           //计算得到的背景图像
        private Image<TColor, Single> imageTemp;            //临时图像
        private bool isStatDataReady;                       //是否已经准备好统计数据
        private Image<Gray, Single>[] imagesHi;             //背景模型中各通道的最大值图像
        private Image<Gray, Single>[] imagesLow;            //背景模型中各通道的最小值图像

        /// <summary>
        /// 构造函数
        /// </summary>
        public BackgroundStatModelMultiplyAcc()
        {
            imageAccSum = null;
            imageAccMultiply = null;
            frameCount = 0;
            previousFrame = null;
            currentFrame = null;
            scale = 6d;
            backgroundMask = null;
            isStatDataReady = false;
            imagesHi = null;
            imagesLow = null;
        }

        /// <summary>
        /// 设置或者获取计算前景时所用的阀值
        /// </summary>
        public double Scale
        {
            get
            {
                return scale;
            }
            set
            {
                scale = value > 0 ? value : 6d;
            }
        }

        /// <summary>
        /// 更新背景模型
        /// </summary>
        /// <param name="image"></param>
        public void Update(Image<TColor, Byte> image)
        {
            if (frameCount == 0)
            {
                imageAccSum = new Image<TColor, Single>(image.Size);
                imageAccSum.SetZero();
                imageAccMultiply = new Image<TColor, float>(image.Size);
                imageAccMultiply.SetZero();
            }
            imageTemp = image.ConvertScale<Single>(1d, 0d); //将图像转换成浮点型
            imageAccSum.Acc(imageTemp);
            if (previousFrame != null)
                CvInvoke.cvMultiplyAcc(previousFrame.Ptr, imageTemp.Ptr, imageAccMultiply.Ptr, IntPtr.Zero);
            previousFrame = imageTemp.Copy();
            frameCount++;
        }

        /// <summary>
        /// 获取或者设置当前帧
        /// </summary>
        public Image<TColor, Byte> CurrentFrame
        {
            get
            {
                return currentFrame;
            }
            set
            {
                currentFrame = value;
                CalcBackgroundMask();
            }
        }

        /// <summary>
        /// 计算统计数据
        /// </summary>
        public void CalcStatData()
        {
            //计算出标准协方差、最高及最低阀值图像
            Image<TColor, Single> imageAvg = imageAccSum.ConvertScale<Single>(1d / frameCount, 0d);
            Image<TColor, Single> imageScov = imageAccMultiply.ConvertScale<Single>(1d / frameCount, 0d);
            imageScov.Sub(imageAvg.Pow(2d));
            imageScov = imageScov.Pow(0.5d);
            Image<TColor, Single> imageHi = imageAvg.Add(imageScov.ConvertScale<Single>(scale, 0d));
            Image<TColor, Single> imageLow = imageAvg.Sub(imageScov.ConvertScale<Single>(scale, 0d));
            imagesHi = imageHi.Split();
            imagesLow = imageLow.Split();
            isStatDataReady = true;
            //释放资源
            imageAvg.Dispose();
            imageScov.Dispose();
            imageHi.Dispose();
            imageLow.Dispose();
        }

        /// <summary>
        /// 计算背景
        /// </summary>
        private void CalcBackgroundMask()
        {
            if (imageAccSum == null || imageAccMultiply == null || imageAccSum.Size != currentFrame.Size)
                throw new ArgumentException("在计算背景时发生参数错误。可能是:还没有建立背景模型;或者当前帧的尺寸与背景尺寸不一致。");
            if (!isStatDataReady)
                CalcStatData();
            imageTemp = currentFrame.ConvertScale<Single>(1d, 0d);
            Image<Gray, Single>[] images = imageTemp.Split();
            //计算背景图像
            if (backgroundMask == null)
                backgroundMask = new Image<Gray, byte>(currentFrame.Size);
            backgroundMask.SetZero();
            for (int i = 0; i < currentFrame.NumberOfChannels; i++)
                backgroundMask._Or(images[i].InRange(imagesLow[i], imagesHi[i]));
            //释放资源
            for (int i = 0; i < images.Length; i++)
                images[i].Dispose();
        }

        /// <summary>
        /// 获取背景
        /// </summary>
        public Image<Gray, Byte> BackgroundMask
        {
            get
            {
                return backgroundMask;
            }
        }

        /// <summary>
        /// 获取前景
        /// </summary>
        public Image<Gray, Byte> ForegroundMask
        {
            get
            {
                return backgroundMask.Not();
            }
        }

        /// <summary>
        /// 释放资源
        /// </summary>
        public void Dispose()
        {
            if (imageAccSum != null)
                imageAccSum.Dispose();
            if (imageAccMultiply != null)
                imageAccMultiply.Dispose();
            if (previousFrame != null)
                previousFrame.Dispose();
            if (currentFrame != null)
                currentFrame.Dispose();
            if (backgroundMask != null)
                backgroundMask.Dispose();
            if (isStatDataReady)
            {
                for (int i = 0; i < imagesHi.Length; i++)
                {
                    imagesHi[i].Dispose();
                    imagesLow[i].Dispose();
                }
            }
        }
    }

    /// <summary>
    /// 背景统计模型
    /// </summary>
    public class BackgroundStatModelBase<TColor> : IBackgroundStatModel<TColor>
        where TColor : struct, IColor
    {
        //成员变量
        IBackgroundStatModel<TColor> bgModel;
        BackgroundStatModelType type;

        /// <summary>
        /// 构造函数
        /// </summary>
        /// <param name="type">背景模型类型</param>
        public BackgroundStatModelBase(BackgroundStatModelType type)
        {
            this.type = type;
            switch (type)
            {
                case BackgroundStatModelType.FrameDiff:
                    bgModel = new BackgroundStatModelFrameDiff<TColor>();
                    break;
                case BackgroundStatModelType.AccAvg:
                    bgModel = new BackgroundStatModelAccAvg<TColor>();
                    break;
                case BackgroundStatModelType.RunningAvg:
                    bgModel = new BackgroundStatModelRunningAvg<TColor>();
                    break;
                case BackgroundStatModelType.SquareAcc:
                    bgModel = new BackgroundStatModelSquareAcc<TColor>();
                    break;
                case BackgroundStatModelType.MultiplyAcc:
                    bgModel = new BackgroundStatModelMultiplyAcc<TColor>();
                    break;
                default:
                    throw new ArgumentException("不存在的背景模型", "type");
            }
        }

        /// <summary>
        /// 获取背景模型类型
        /// </summary>
        public BackgroundStatModelType BackgroundStatModelType
        {
            get
            {
                return type;
            }
        }

        /// <summary>
        /// 更新背景模型
        /// </summary>
        /// <param name="image"></param>
        public void Update(Image<TColor, Byte> image)
        {
            bgModel.Update(image);
        }

        /// <summary>
        /// 计算统计数据
        /// </summary>
        public void CalcStatData()
        {
            bgModel.CalcStatData();
        }

        /// <summary>
        /// 设置或者获取当前帧
        /// </summary>
        public Image<TColor, Byte> CurrentFrame
        {
            get
            {
                return bgModel.CurrentFrame;
            }
            set
            {
                bgModel.CurrentFrame = value;
            }
        }

        /// <summary>
        /// 获取背景
        /// </summary>
        public Image<Gray, Byte> BackgroundMask
        {
            get
            {
                return bgModel.BackgroundMask;
            }
        }

        /// <summary>
        /// 获取前景
        /// </summary>
        public Image<Gray, Byte> ForegroundMask
        {
            get
            {
                return bgModel.ForegroundMask;
            }
        }

        /// <summary>
        /// 释放资源
        /// </summary>
        public void Dispose()
        {
            if (bgModel != null)
                bgModel.Dispose();
        }
    }

    /// <summary>
    /// 背景模型类型
    /// </summary>
    public enum BackgroundStatModelType
    {
        FrameDiff,      //帧差
        AccAvg,         //平均背景
        RunningAvg,     //均值漂移
        MultiplyAcc,    //计算协方差
        SquareAcc       //计算方差
    }
}

3.编码本背景模型
    编码本的基本思路是这样的:针对每个像素在时间轴上的变动,建立多个(或者一个)包容近期所有变化的Box(变动范围);在检测时,用当前像素与Box去比较,如果当前像素落在任何Box的范围内,则为背景。
    在OpenCv中已经实现了编码本背景模型,不过实现方式与《学习OpenCv》中提到的方式略有不同,主要有:(1)使用单向链表来容纳Code Element;(2)清除消极的Code Element时,并未重置t。OpenCv中的以下函数与编码本背景模型相关:
cvCreateBGCodeBookModel  建立背景模型
cvBGCodeBookUpdate       更新背景模型
cvBGCodeBookClearStale   清除消极的Code Element
cvBGCodeBookDiff         计算得到背景与前景(注意:该函数仅仅设置背景像素为0,而对前景像素未处理,因此在调用前需要将所有的像素先置为前景)
cvReleaseBGCodeBookModel 释放资源
    在EmguCv中只实现了一部分编码本背景模型,在类BGCodeBookModel<TColor>中,可惜它把cvBGCodeBookDiff给搞忘记了 -_-

下面的代码演示了如何使用编码本背景模型:


            //(1)初始化对象
            if (rbCodeBook.Checked)
            {
                if (bgCodeBookModel != null)
                {
                    bgCodeBookModel.Dispose();
                    bgCodeBookModel = null;
                }
                bgCodeBookModel = new BGCodeBookModel<Bgr>();
            }
            //(2)背景建模或者前景检测
            bool stop = false;
            while (!stop)
            {
                Image<Bgr, Byte> image = capture.QueryFrame().Clone();  //当前帧
                bool isBgModeling, isFgDetecting;                       //是否正在建模,是否正在前景检测
                lock (lockObject)
                {
                    stop = !isVideoCapturing;
                    isBgModeling = isBackgroundModeling;
                    isFgDetecting = isForegroundDetecting;
                }
                //得到设置的参数
                SettingParam param = (SettingParam)this.Invoke(new GetSettingParamDelegate(GetSettingParam));
                //code book
                if (param.ForegroundDetectType == ForegroundDetectType.CodeBook)
                {
                    if (bgCodeBookModel != null)
                    {
                        //背景建模
                        if (isBgModeling)
                        {
                            bgCodeBookModel.Update(image);
                            //背景建模一段时间之后,清理陈旧的条目 (因为清理操作不会重置t,所以这里用求余数的办法来决定清理的时机)
                            if (backgroundModelFrameCount % CodeBookClearPeriod == CodeBookClearPeriod - 1)
                                bgCodeBookModel.ClearStale(CodeBookStaleThresh, Rectangle.Empty, null);
                            backgroundModelFrameCount++;
                            pbBackgroundModel.Image = bgCodeBookModel.BackgroundMask.Bitmap;
                            //如果达到最大背景建模次数,停止背景建模
                            if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)
                                this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));
                        }
                        //前景检测
                        if (isFgDetecting)
                        {
                            Image<Gray, Byte> imageFg = new Image<Gray, byte>(image.Size);
                            imageFg.SetValue(255d);     //CodeBook在得出前景时,仅仅将背景像素置零,所以这里需要先将所有的像素都假设为前景
                            CvInvoke.cvBGCodeBookDiff(bgCodeBookModel.Ptr, image.Ptr, imageFg.Ptr, Rectangle.Empty);
                            pbBackgroundModel.Image = imageFg.Bitmap;
                        }
                    }
                }
                //更新视频图像
                pbVideo.Image = image.Bitmap;
            }
            //(3)释放对象
            if (bgCodeBookModel != null)
            {
                try
                {
                    bgCodeBookModel.Dispose();
                }
                catch { }
            }

4.高级背景统计模型
    在OpenCv还实现了两种高级的背景统计模型,它们为别是:(1)FGD——复杂背景下的前景物体检测(Foreground object detection from videos containing complex background);(2)MOG——高斯混合模型(Mixture Of Gauss)。包括以下函数:
CvCreateFGDetectorBase  建立前景检测对象
CvFGDetectorProcess     更新前景检测对象
CvFGDetectorGetMask     获取前景
CvFGDetectorRelease     释放资源
    EmguCv将其封装到类FGDetector<TColor>中。我个人觉得OpenCv在实现这个模型的时候做得不太好,因为它将背景建模和前景检测糅合到一起了,无论你是否愿意,在建模的过程中也会检测前景,而只希望前景检测的时候,同时也会建模。我比较喜欢将背景建模和前景检测进行分离的设计。

调用的过程很简单,代码如下:

            //(1)创建对象
            if (rbMog.Checked)
            {
                if (fgDetector != null)
                {
                    fgDetector.Dispose();
                    fgDetector = null;
                }
                fgDetector = new FGDetector<Bgr>(FORGROUND_DETECTOR_TYPE.FGD);
            }
            else if (rbFgd.Checked)
            {
                if (fgDetector != null)
                {
                    fgDetector.Dispose();
                    fgDetector = null;
                }
                fgDetector = new FGDetector<Bgr>(FORGROUND_DETECTOR_TYPE.MOG);
            }
            //背景建模及前景检测
            bool stop = false;
            while (!stop)
            {
                Image<Bgr, Byte> image = capture.QueryFrame().Clone();  //当前帧
                bool isBgModeling, isFgDetecting;                       //是否正在建模,是否正在前景检测
                lock (lockObject)
                {
                    stop = !isVideoCapturing;
                    isBgModeling = isBackgroundModeling;
                    isFgDetecting = isForegroundDetecting;
                }
                //得到设置的参数
                SettingParam param = (SettingParam)this.Invoke(new GetSettingParamDelegate(GetSettingParam));
                if (param.ForegroundDetectType == ForegroundDetectType.Fgd || param.ForegroundDetectType == ForegroundDetectType.Mog)
                {
                    if (fgDetector != null && (isBgModeling || isFgDetecting))
                    {
                        //背景建模
                        fgDetector.Update(image);
                        backgroundModelFrameCount++;
                        pbBackgroundModel.Image = fgDetector.BackgroundMask.Bitmap;
                        //如果达到最大背景建模次数,停止背景建模
                        if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)
                            this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));
                        //前景检测
                        if (isFgDetecting)
                        {
                            pbBackgroundModel.Image = fgDetector.ForgroundMask.Bitmap;
                        }
                    }
                }
                //更新视频图像
                pbVideo.Image = image.Bitmap;
            }
            //(3)释放资源
            if (fgDetector != null)
            {
                try
                {
                    fgDetector.Dispose();
                }
                catch { }
            }

前景检测
    在建立好背景模型之后,通过对当前图像及背景的某种比较,我们可以得出前景。在上面的介绍中,已经包含了对前景的代码,在此不再重复。一般情况下,得到的前景包含了很多噪声,为了消除噪声,我们可以对前景图像进行开运算及闭运算,然后再丢弃比较小的轮廓。

本文的代码

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Diagnostics;
using System.Runtime.InteropServices;
using System.Threading;
using Emgu.CV;
using Emgu.CV.CvEnum;
using Emgu.CV.Structure;
using Emgu.CV.UI;
using Emgu.CV.VideoSurveillance;

namespace ImageProcessLearn
{
    public partial class FormForegroundDetect : Form
    {
        //成员变量
        Capture capture = null;                         //视频捕获对象
        Thread captureThread = null;                    //视频捕获线程
        private bool isVideoCapturing = true;           //是否正在捕获视频
        private bool isBackgroundModeling = false;      //是否正在背景建模
        private int backgroundModelFrameCount = 0;      //已经建模的视频帧数
        private bool isForegroundDetecting = false;     //是否正在进行前景检测
        private object lockObject = new object();       //用于锁定的对象

        //各种前景检测方法对应的对象
        BGCodeBookModel<Bgr> bgCodeBookModel = null;    //编码本前景检测
        private const int CodeBookClearPeriod = 40;     //编码本的清理周期,更新这么多次背景之后,清理掉很少使用的陈旧条目
        private const int CodeBookStaleThresh = 20;     //在清理编码本时,使用的阀值(stale大于该阀值的条目将被删除)
        FGDetector<Bgr> fgDetector = null;              //Mog或者Fgd检测
        BackgroundStatModelFrameDiff<Bgr> bgModelFrameDiff = null;      //帧差
        BackgroundStatModelAccAvg<Bgr> bgModelAccAvg = null;            //平均背景
        BackgroundStatModelRunningAvg<Bgr> bgModelRunningAvg = null;    //均值漂移
        BackgroundStatModelSquareAcc<Bgr> bgModelSquareAcc = null;      //标准方差
        BackgroundStatModelMultiplyAcc<Bgr> bgModelMultiplyAcc = null;  //标准协方差


        public FormForegroundDetect()
        {
            InitializeComponent();
        }

        //窗体加载时
        private void FormForegroundDetect_Load(object sender, EventArgs e)
        {
            //设置Tooltip
            toolTip.Active = true;
            toolTip.SetToolTip(rbMog, "高斯混合模型(Mixture Of Gauss)");
            toolTip.SetToolTip(rbFgd, "复杂背景下的前景物体检测(Foreground object detection from videos containing complex background)");
            toolTip.SetToolTip(txtMaxBackgroundModelFrameCount, "在背景建模时,使用的最大帧数,超出该值之后,将自动停止背景建模。\r\n对于帧差,总是只捕捉当前帧作为背景。\r\n如果设为零,背景检测将不会自动停止。");
            
            //打开摄像头视频捕获线程
            capture = new Capture(0);
            captureThread = new Thread(new ParameterizedThreadStart(CaptureWithEmguCv));
            captureThread.Start(null);
        }

        //窗体关闭前
        private void FormForegroundDetect_FormClosing(object sender, FormClosingEventArgs e)
        {
            //终止视频捕获
            isVideoCapturing = false;
            if (captureThread != null)
                captureThread.Abort();
            if (capture != null)
                capture.Dispose();
            //释放对象
            if (bgCodeBookModel != null)
            {
                try
                {
                    bgCodeBookModel.Dispose();
                }
                catch { }
            }
            if (fgDetector != null)
            {
                try
                {
                    fgDetector.Dispose();
                }
                catch { }
            }
            if (bgModelFrameDiff != null)
                bgModelFrameDiff.Dispose();
            if (bgModelAccAvg != null)
                bgModelAccAvg.Dispose();
            if (bgModelRunningAvg != null)
                bgModelRunningAvg.Dispose();
            if (bgModelSquareAcc != null)
                bgModelSquareAcc.Dispose();
            if (bgModelMultiplyAcc != null)
                bgModelMultiplyAcc.Dispose();
        }

        //EmguCv视频捕获
        private void CaptureWithEmguCv(object objParam)
        {
            if (capture == null)
                return;
            bool stop = false;
            while (!stop)
            {
                Image<Bgr, Byte> image = capture.QueryFrame().Clone();  //当前帧
                bool isBgModeling, isFgDetecting;                       //是否正在建模,是否正在前景检测
                lock (lockObject)
                {
                    stop = !isVideoCapturing;
                    isBgModeling = isBackgroundModeling;
                    isFgDetecting = isForegroundDetecting;
                }
                //得到设置的参数
                SettingParam param = (SettingParam)this.Invoke(new GetSettingParamDelegate(GetSettingParam));
                //code book
                if (param.ForegroundDetectType == ForegroundDetectType.CodeBook)
                {
                    if (bgCodeBookModel != null && (isBgModeling || isFgDetecting))
                    {
                        //背景建模
                        if (isBgModeling)
                        {
                            bgCodeBookModel.Update(image);
                            //背景建模一段时间之后,清理陈旧的条目
                            if (backgroundModelFrameCount % CodeBookClearPeriod == CodeBookClearPeriod - 1)
                                bgCodeBookModel.ClearStale(CodeBookStaleThresh, Rectangle.Empty, null);
                            backgroundModelFrameCount++;
                            pbBackgroundModel.Image = bgCodeBookModel.BackgroundMask.Bitmap;
                            //如果达到最大背景建模次数,停止背景建模
                            if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)
                                this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));
                        }
                        //前景检测
                        if (isFgDetecting)
                        {
                            Image<Gray, Byte> imageFg = new Image<Gray, byte>(image.Size);
                            imageFg.SetValue(255d);     //CodeBook在得出前景时,仅仅将背景像素置零,所以这里需要先将所有的像素都假设为前景
                            CvInvoke.cvBGCodeBookDiff(bgCodeBookModel.Ptr, image.Ptr, imageFg.Ptr, Rectangle.Empty);
                            pbBackgroundModel.Image = imageFg.Bitmap;
                        }
                    }
                }
                //fgd or mog
                else if (param.ForegroundDetectType == ForegroundDetectType.Fgd || param.ForegroundDetectType == ForegroundDetectType.Mog)
                {
                    if (fgDetector != null && (isBgModeling || isFgDetecting))
                    {
                        //背景建模
                        fgDetector.Update(image);
                        backgroundModelFrameCount++;
                        pbBackgroundModel.Image = fgDetector.BackgroundMask.Bitmap;
                        //如果达到最大背景建模次数,停止背景建模
                        if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)
                            this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));
                        //前景检测
                        if (isFgDetecting)
                        {
                            pbBackgroundModel.Image = fgDetector.ForgroundMask.Bitmap;
                        }
                    }
                }
                //帧差
                else if (param.ForegroundDetectType == ForegroundDetectType.FrameDiff)
                {
                    if (bgModelFrameDiff != null)
                    {
                        //背景建模
                        if (isBgModeling)
                        {
                            bgModelFrameDiff.Update(image);
                            backgroundModelFrameCount++;
                            this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel)); //对于帧差,只需要捕获当前帧作为背景即可
                        }
                        //前景检测
                        if (isFgDetecting)
                        {
                            bgModelFrameDiff.Threshold = param.Threshold;
                            bgModelFrameDiff.CurrentFrame = image;
                            pbBackgroundModel.Image = bgModelFrameDiff.ForegroundMask.Bitmap;
                        }
                    }
                }
                //平均背景
                else if (param.ForegroundDetectType == ForegroundDetectType.AccAvg)
                {
                    if (bgModelAccAvg!=null)
                    {
                        //背景建模
                        if (isBgModeling)
                        {
                            bgModelAccAvg.Update(image);
                            backgroundModelFrameCount++;
                            //如果达到最大背景建模次数,停止背景建模
                            if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)
                                this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));
                        }
                        //前景检测
                        if (isFgDetecting)
                        {
                            bgModelAccAvg.CurrentFrame = image;
                            pbBackgroundModel.Image = bgModelAccAvg.ForegroundMask.Bitmap;
                        }
                    }
                }
                //均值漂移
                else if (param.ForegroundDetectType == ForegroundDetectType.RunningAvg)
                {
                    if (bgModelRunningAvg != null)
                    {
                        //背景建模
                        if (isBgModeling)
                        {
                            bgModelRunningAvg.Update(image);
                            backgroundModelFrameCount++;
                            //如果达到最大背景建模次数,停止背景建模
                            if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)
                                this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));
                        }
                        //前景检测
                        if (isFgDetecting)
                        {
                            bgModelRunningAvg.CurrentFrame = image;
                            pbBackgroundModel.Image = bgModelRunningAvg.ForegroundMask.Bitmap;
                        }
                    }
                }
                //计算方差
                else if (param.ForegroundDetectType == ForegroundDetectType.SquareAcc)
                {
                    if (bgModelSquareAcc != null)
                    {
                        //背景建模
                        if (isBgModeling)
                        {
                            bgModelSquareAcc.Update(image);
                            backgroundModelFrameCount++;
                            //如果达到最大背景建模次数,停止背景建模
                            if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)
                                this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));
                        }
                        //前景检测
                        if (isFgDetecting)
                        {
                            bgModelSquareAcc.CurrentFrame = image;
                            pbBackgroundModel.Image = bgModelSquareAcc.ForegroundMask.Bitmap;
                        }
                    }
                }
                //协方差
                else if (param.ForegroundDetectType == ForegroundDetectType.MultiplyAcc)
                {
                    if (bgModelMultiplyAcc != null)
                    {
                        //背景建模
                        if (isBgModeling)
                        {
                            bgModelMultiplyAcc.Update(image);
                            backgroundModelFrameCount++;
                            //如果达到最大背景建模次数,停止背景建模
                            if (param.MaxBackgroundModelFrameCount != 0 && backgroundModelFrameCount > param.MaxBackgroundModelFrameCount)
                                this.Invoke(new NoParamAndReturnDelegate(StopBackgroundModel));
                        }
                        //前景检测
                        if (isFgDetecting)
                        {
                            bgModelMultiplyAcc.CurrentFrame = image;
                            pbBackgroundModel.Image = bgModelMultiplyAcc.ForegroundMask.Bitmap;
                        }
                    }
                }
                //更新视频图像
                pbVideo.Image = image.Bitmap;
            }
        }

        //用于在工作线程中更新结果的委托及方法
        private delegate void AddResultDelegate(string result);
        private void AddResultMethod(string result)
        {
            //txtResult.Text += result;
        }

        //用于在工作线程中获取设置参数的委托及方法
        private delegate SettingParam GetSettingParamDelegate();
        private SettingParam GetSettingParam()
        {
            ForegroundDetectType type = ForegroundDetectType.FrameDiff;
            if (rbFrameDiff.Checked)
                type = ForegroundDetectType.FrameDiff;
            else if (rbAccAvg.Checked)
                type = ForegroundDetectType.AccAvg;
            else if (rbRunningAvg.Checked)
                type = ForegroundDetectType.RunningAvg;
            else if (rbMultiplyAcc.Checked)
                type = ForegroundDetectType.MultiplyAcc;
            else if (rbSquareAcc.Checked)
                type = ForegroundDetectType.SquareAcc;
            else if (rbCodeBook.Checked)
                type = ForegroundDetectType.CodeBook;
            else if (rbMog.Checked)
                type = ForegroundDetectType.Mog;
            else
                type = ForegroundDetectType.Fgd;
            int maxFrameCount = 0;
            int.TryParse(txtMaxBackgroundModelFrameCount.Text, out maxFrameCount);
            double threshold = 15d;
            double.TryParse(txtThreshold.Text, out threshold);
            if (threshold <= 0)
                threshold = 15d;
            return new SettingParam(type, maxFrameCount, threshold);
        }

        //没有参数及返回值的委托
        private delegate void NoParamAndReturnDelegate();

        //开始背景建模
        private void btnStartBackgroundModel_Click(object sender, EventArgs e)
        {
            if (rbCodeBook.Checked)
            {
                if (bgCodeBookModel != null)
                {
                    bgCodeBookModel.Dispose();
                    bgCodeBookModel = null;
                }
                bgCodeBookModel = new BGCodeBookModel<Bgr>();
            }
            else if (rbMog.Checked)
            {
                if (fgDetector != null)
                {
                    fgDetector.Dispose();
                    fgDetector = null;
                }
                fgDetector = new FGDetector<Bgr>(FORGROUND_DETECTOR_TYPE.FGD);
            }
            else if (rbFgd.Checked)
            {
                if (fgDetector != null)
                {
                    fgDetector.Dispose();
                    fgDetector = null;
                }
                fgDetector = new FGDetector<Bgr>(FORGROUND_DETECTOR_TYPE.MOG);
            }
            else if (rbFrameDiff.Checked)
            {
                if (bgModelFrameDiff != null)
                {
                    bgModelFrameDiff.Dispose();
                    bgModelFrameDiff = null;
                }
                bgModelFrameDiff = new BackgroundStatModelFrameDiff<Bgr>();
            }
            else if (rbAccAvg.Checked)
            {
                if (bgModelAccAvg != null)
                {
                    bgModelAccAvg.Dispose();
                    bgModelAccAvg = null;
                }
                bgModelAccAvg = new BackgroundStatModelAccAvg<Bgr>();
            }
            else if (rbRunningAvg.Checked)
            {
                if (bgModelRunningAvg != null)
                {
                    bgModelRunningAvg.Dispose();
                    bgModelRunningAvg = null;
                }
                bgModelRunningAvg = new BackgroundStatModelRunningAvg<Bgr>();
            }
            else if (rbSquareAcc.Checked)
            {
                if (bgModelSquareAcc != null)
                {
                    bgModelSquareAcc.Dispose();
                    bgModelSquareAcc = null;
                }
                bgModelSquareAcc = new BackgroundStatModelSquareAcc<Bgr>();
            }
            else if (rbMultiplyAcc.Checked)
            {
                if (bgModelMultiplyAcc != null)
                {
                    bgModelMultiplyAcc.Dispose();
                    bgModelMultiplyAcc = null;
                }
                bgModelMultiplyAcc = new BackgroundStatModelMultiplyAcc<Bgr>();
            }
            backgroundModelFrameCount = 0;
            isBackgroundModeling = true;
            btnStartBackgroundModel.Enabled = false;
            btnStopBackgroundModel.Enabled = true;
            btnStartForegroundDetect.Enabled = false;
            btnStopForegroundDetect.Enabled = false;
        }

        //停止背景建模
        private void btnStopBackgroundModel_Click(object sender, EventArgs e)
        {
            StopBackgroundModel();
        }

        //停止背景建模
        private void StopBackgroundModel()
        {
            lock (lockObject)
            {
                isBackgroundModeling = false;
            }
            btnStartBackgroundModel.Enabled = true;
            btnStopBackgroundModel.Enabled = false;
            btnStartForegroundDetect.Enabled = true;
            btnStopForegroundDetect.Enabled = false;
        }

        //开始前景检测
        private void btnStartForegroundDetect_Click(object sender, EventArgs e)
        {
            isForegroundDetecting = true;
            btnStartBackgroundModel.Enabled = false;
            btnStopBackgroundModel.Enabled = false;
            btnStartForegroundDetect.Enabled = false;
            btnStopForegroundDetect.Enabled = true;
        }

        //停止前景检测
        private void btnStopForegroundDetect_Click(object sender, EventArgs e)
        {
            lock (lockObject)
            {
                isForegroundDetecting = false;
            }
            btnStartBackgroundModel.Enabled = true;
            btnStopBackgroundModel.Enabled = false;
            btnStartForegroundDetect.Enabled = true;
            btnStopForegroundDetect.Enabled = false;
        }
    }

    //前景检测方法枚举
    public enum ForegroundDetectType
    {
        FrameDiff,
        AccAvg,
        RunningAvg,
        MultiplyAcc,
        SquareAcc,
        CodeBook,
        Mog,
        Fgd
    }

    //设置参数
    public struct SettingParam
    {
        public ForegroundDetectType ForegroundDetectType;
        public int MaxBackgroundModelFrameCount;
        public double Threshold;

        public SettingParam(ForegroundDetectType foregroundDetectType, int maxBackgroundModelFrameCount, double threshold)
        {
            ForegroundDetectType = foregroundDetectType;
            MaxBackgroundModelFrameCount = maxBackgroundModelFrameCount;
            Threshold = threshold;
        }
    }
}

   另外,细心的读者发现我忘记贴OpenCvInvoke类的实现代码了,这里补上。多谢指正。

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Drawing;
using System.Runtime.InteropServices;
using Emgu.CV.Structure;
using Emgu.CV.CvEnum;

namespace ImageProcessLearn
{
    /// <summary>
    /// 声明一些没有包含在EmguCv中的OpenCv函数
    /// </summary>
    public static class OpenCvInvoke
    {
        //自适应动态背景检测
        [DllImport("cvaux200.dll")]
        public static extern void cvChangeDetection(IntPtr prev_frame, IntPtr curr_frame, IntPtr change_mask);

        //均值漂移分割
        [DllImport("cv200.dll")]
        public static extern void cvPyrMeanShiftFiltering(IntPtr src, IntPtr dst, double spatialRadius, double colorRadius, int max_level, MCvTermCriteria termcrit);

        //开始查找轮廓
        [DllImport("cv200.dll")]
        public static extern IntPtr cvStartFindContours(IntPtr image, IntPtr storage, int header_size, RETR_TYPE mode, CHAIN_APPROX_METHOD method, Point offset);

        //查找下一个轮廓
        [DllImport("cv200.dll")]
        public static extern IntPtr cvFindNextContour(IntPtr scanner);

        //用新轮廓替换scanner指向的当前轮廓
        [DllImport("cv200.dll")]
        public static extern void cvSubstituteContour(IntPtr scanner, IntPtr new_contour);

        //结束轮廓查找
        [DllImport("cv200.dll")]
        public static extern IntPtr cvEndFindContour(ref IntPtr scanner);
    }
}

后记
    值得注意的是,本文提到的OpenCv函数目前属于CvAux系列,以后也许会加入到正式的图像处理Cv系列,也许以后会消失。最重要的是它们还没有正式的文档。

    其实关于背景模型的方法还有很多,比如《Video-object segmentation using multi-sprite background subtraction》可以在摄像机运动的情况下建立背景《Nonparametric background generation》利用mean-shift算法处理动态的背景模型,如果我的时间和能力允许,也许会去尝试实现它们。另外,《Wallflower: Principles and practice of background maintenance》比较了各种背景建模方式的差异,我希望能够尝试翻译出来。

    感谢您耐心看完本文,希望对您有所帮助。


你可能感兴趣的:(背景建模或前景检测(Background Generation And Foreground Detection) 一)