#include <iostream> #include <cv.h> #include <highgui.h> using namespace cv; int main( int argc, char** argv ) { Mat src, hsv; src=imread("f.jpg"); cvtColor(src, hsv, CV_BGR2HSV); // Quantize the hue to 30 levels // and the saturation to 32 levels int hbins = 30, sbins = 32; int histSize[] = {hbins, sbins}; // hue varies from 0 to 179, see cvtColor float hranges[] = { 0, 180 }; // saturation varies from 0 (black-gray-white) to // 255 (pure spectrum color) float sranges[] = { 0, 256 }; const float *ranges[] = { hranges, sranges }; MatND hist; // we compute the histogram from the 0-th and 1-st channels int channels[] = {0, 1}; calcHist( &hsv, 1, channels, Mat(), // do not use mask hist, 2, histSize, ranges, true, // the histogram is uniform false ); //这里查看hist直方图的长和高,可以看出rows=30,cols=32 std::cout<<hist.rows<<std::endl; std::cout<<hist.cols<<std::endl; //下面是怎样显示直方图 double maxVal=0; minMaxLoc(hist, 0, &maxVal, 0, 0); int scale = 10; Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3); for( int h = 0; h < hbins; h++ ) for( int s = 0; s < sbins; s++ ) { float binVal = hist.at<float>(h, s); int intensity = cvRound(binVal*255/maxVal); rectangle( histImg, Point(h*scale, s*scale),Point( (h+1)*scale - 1, (s+1)*scale - 1), Scalar::all(intensity),CV_FILLED ); } namedWindow( "Source", 1 ); imshow( "Source", src ); namedWindow( "H-S Histogram", 1 ); imshow( "H-S Histogram", histImg ); waitKey(); }
hue色彩
saturation饱和度
minMaxLoc用来最小和最大的元素值以及它们各自的位置。