N<=100000 M<=200000 K<=100000
弱B。。的弱B题解。。。
首先我们知道,可以把提问中没问的边缩成点。
但是不影响复杂度。。。
所以我们,把它拆成2半。。
前一半缩点(不考虑后一半的询问),乱搞,后一半的不用考虑前一半的询问,乱搞。。。
于是f(q)=f(q/2)+O(qc*a(qc)) O(f(q))=O(qlogqc*α(qc))
#include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<functional> #include<iostream> #include<cmath> using namespace std; #define For(i,n) for(int i=1;i<=n;i++) #define Fork(i,k,n) for(int i=k;i<=n;i++) #define Rep(i,n) for(int i=0;i<n;i++) #define ForD(i,n) for(int i=n;i;i--) #define RepD(i,n) for(int i=n;i>=0;i--) #define Forp(x) for(int p=pre[x];p;p=next[p]) #define Lson (x<<1) #define Rson ((x<<1)+1) #define MEMr(a,n,w) Rep(i,n) a[i]=w; #define MEMF(a,n,w) For(i,n) a[i]=w; #define MEM(a) memset(a,0,sizeof(a)); #define MEMI(a) memset(a,127,sizeof(a)); #define MEMi(a) memset(a,128,sizeof(a)); #define INF (2139062143) #define F (100000007) #define MAXN (100000+10) #define MAXM (200000+10) #define MAXQ (100000+10) #define MAXC (4) long long mul(long long a,long long b){return (a*b)%F;} long long add(long long a,long long b){return (a+b)%F;} long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;} typedef long long ll; int n,m,q; struct comm { int n,a[4]; }ask[MAXQ],back[MAXQ*30],*back_tail=back; struct E { int x,y; }e[MAXM*30],*e_tail=e; struct unionset { int father[MAXN]; void init(int n){For(i,n) father[i]=i;} int getfather(int x) { if (father[x]==x) return x; return father[x]=getfather(father[x]); } bool union2(int x,int y) { if (getfather(x)==getfather(y)) return 0; father[father[x]]=father[y]; return 1; } }ufs; bool ans[MAXQ]={0}; int newV[MAXN],newE[MAXM]; void solve(int n,E *_e,int m,int l,int r) { e_tail+=m; E *e=e_tail; copy(_e,e_tail,e); static bool b[MAXM]={0};MEMr(b,m,0); if (l==r) { Rep(j,ask[l].n) b[ask[l].a[j]]=1; ufs.init(n); int tot=0; Rep(i,m) if (!b[i]) tot+=ufs.union2(e[i].x,e[i].y); if (tot==n-1) ans[l]=1; e_tail-=m; return; } Fork(i,l,r) Rep(j,ask[i].n) b[ask[i].a[j]]=1; ufs.init(n); Rep(i,m) if (!b[i]) ufs.union2(e[i].x,e[i].y); //Con int n2=0; For(i,n) if (ufs.getfather(i)==i) newV[i]=++n2; For(i,n) if (ufs.getfather(i)^i) newV[i]=newV[ufs.getfather(i)]; Rep(i,m) e[i].x=newV[e[i].x],e[i].y=newV[e[i].y]; //Red int m2=0; Rep(i,m) if (b[i]) newE[i]=m2++; Rep(i,m) if (b[i]) e[newE[i]]=e[i]; Fork(i,l,r) Rep(j,ask[i].n) ask[i].a[j]=newE[ask[i].a[j]]; { int m=l+r>>1,len=m-l+1; comm *back_head=back_tail; back_tail+=len; copy(ask+l,ask+m+1,back_head); solve(n2,e,m2,l,m); copy(back_head,back_head+len,ask+l); back_tail-=len; solve(n2,e,m2,m+1,r); } e_tail-=m; } int main() { // freopen("bzoj3237.in","r",stdin); scanf("%d%d",&n,&m); Rep(i,m) scanf("%d%d",&e[i].x,&e[i].y); scanf("%d",&q); Rep(i,q) { scanf("%d",&ask[i].n); Rep(j,ask[i].n) scanf("%d",&ask[i].a[j]),ask[i].a[j]--; } solve(n,e,m,0,q-1); Rep(i,q) if (ans[i]) puts("Connected");else puts("Disconnected"); return 0; }