博文参考standford UFLDL教程working with large images小节。
1、卷积特征提取
之前做过的练习如sparse autoencoders、softmax regression、stacked autoencoders等处理的都是比较小的图像,如8x8啊,28x28啊,那时用的是全联通网络(full connected networks),就是隐含层的每个单元都是与输入层的全部单元连接的,如果图像很大的话,比如96*96,那么每个隐含层的单元都要有96*96个权重,如果要学习100个特征的话,就有接近100w个权重了,这么多权重参数学习速度会很慢,而且容易导致过拟合。一个解决办法是使用部分联通网络(locally connected networks)。
部分联通网络的优点:
%% CS294A/CS294W Convolutional Neural Networks Exercise % Instructions % ------------ % % This file contains code that helps you get started on the % convolutional neural networks exercise. In this exercise, you will only % need to modify cnnConvolve.m and cnnPool.m. You will not need to modify % this file. %%====================================================================== %% STEP 0: Initialization % Here we initialize some parameters used for the exercise. imageDim = 64; % image dimension imageChannels = 3; % number of channels (rgb, so 3) patchDim = 8; % patch dimension numPatches = 50000; % number of patches visibleSize = patchDim * patchDim * imageChannels; % number of input units outputSize = visibleSize; % number of output units hiddenSize = 400; % number of hidden units epsilon = 0.1; % epsilon for ZCA whitening poolDim = 19; % dimension of pooling region %%====================================================================== %% STEP 1: Train a sparse autoencoder (with a linear decoder) to learn % features from color patches. If you have completed the linear decoder % execise, use the features that you have obtained from that exercise, % loading them into optTheta. Recall that we have to keep around the % parameters used in whitening (i.e., the ZCA whitening matrix and the % meanPatch) % --------------------------- YOUR CODE HERE -------------------------- % Train the sparse autoencoder and fill the following variables with % the optimal parameters: optTheta = zeros(2*hiddenSize*visibleSize+hiddenSize+visibleSize, 1); ZCAWhite = zeros(visibleSize, visibleSize); meanPatch = zeros(visibleSize, 1); %载入之前linear decoder练习中学到的参数 load 'STL10Features.mat' % -------------------------------------------------------------------- % Display and check to see that the features look good W = reshape(optTheta(1:visibleSize * hiddenSize), hiddenSize, visibleSize); b = optTheta(2*hiddenSize*visibleSize+1:2*hiddenSize*visibleSize+hiddenSize); displayColorNetwork( (W*ZCAWhite)'); %%====================================================================== %% STEP 2: Implement and test convolution and pooling % In this step, you will implement convolution and pooling, and test them % on a small part of the data set to ensure that you have implemented % these two functions correctly. In the next step, you will actually % convolve and pool the features with the STL10 images. %% STEP 2a: Implement convolution % Implement convolution in the function cnnConvolve in cnnConvolve.m % Note that we have to preprocess the images in the exact same way % we preprocessed the patches before we can obtain the feature activations. load stlTrainSubset.mat % loads numTrainImages, trainImages, trainLabels %% Use only the first 8 images for testing convImages = trainImages(:, :, :, 1:8); % NOTE: Implement cnnConvolve in cnnConvolve.m first! convolvedFeatures = cnnConvolve(patchDim, hiddenSize, convImages, W, b, ZCAWhite, meanPatch); %% STEP 2b: Checking your convolution % To ensure that you have convolved the features correctly, we have % provided some code to compare the results of your convolution with % activations from the sparse autoencoder % For 1000 random points for i = 1:1000 %随机挑选1000个patch进行验证 featureNum = randi([1, hiddenSize]); %随机选一个feature imageNum = randi([1, 8]); %随机选张图 imageRow = randi([1, imageDim - patchDim + 1]); %随机选valid的一行 imageCol = randi([1, imageDim - patchDim + 1]); %随机选valid的一列 patch = convImages(imageRow:imageRow + patchDim - 1, imageCol:imageCol + patchDim - 1, :, imageNum); %取出那张图RGB通道的那个patch patch = patch(:); %组合成长向量 patch = patch - meanPatch; %预处理 patch = ZCAWhite * patch; features = feedForwardAutoencoder(optTheta, hiddenSize, visibleSize, patch); %算出激活值 %与convoledFeatures比较是否相等 if abs(features(featureNum, 1) - convolvedFeatures(featureNum, imageNum, imageRow, imageCol)) > 1e-9 fprintf('Convolved feature does not match activation from autoencoder\n'); fprintf('Feature Number : %d\n', featureNum); fprintf('Image Number : %d\n', imageNum); fprintf('Image Row : %d\n', imageRow); fprintf('Image Column : %d\n', imageCol); fprintf('Convolved feature : %0.5f\n', convolvedFeatures(featureNum, imageNum, imageRow, imageCol)); fprintf('Sparse AE feature : %0.5f\n', features(featureNum, 1)); error('Convolved feature does not match activation from autoencoder'); end end disp('Congratulations! Your convolution code passed the test.'); %% STEP 2c: Implement pooling % Implement pooling in the function cnnPool in cnnPool.m % NOTE: Implement cnnPool in cnnPool.m first! pooledFeatures = cnnPool(poolDim, convolvedFeatures); %% STEP 2d: Checking your pooling % To ensure that you have implemented pooling, we will use your pooling % function to pool over a test matrix and check the results. testMatrix = reshape(1:64, 8, 8); expectedMatrix = [mean(mean(testMatrix(1:4, 1:4))) mean(mean(testMatrix(1:4, 5:8))); ... mean(mean(testMatrix(5:8, 1:4))) mean(mean(testMatrix(5:8, 5:8))); ]; testMatrix = reshape(testMatrix, 1, 1, 8, 8); pooledFeatures = squeeze(cnnPool(4, testMatrix)); %pool 4*4的矩阵 if ~isequal(pooledFeatures, expectedMatrix) disp('Pooling incorrect'); disp('Expected'); disp(expectedMatrix); disp('Got'); disp(pooledFeatures); error('Pooled feature does not match expection.'); else disp('Congratulations! Your pooling code passed the test.'); end %%====================================================================== %% STEP 3: Convolve and pool with the dataset % In this step, you will convolve each of the features you learned with % the full large images to obtain the convolved features. You will then % pool the convolved features to obtain the pooled features for % classification. % % Because the convolved features matrix is very large, we will do the % convolution and pooling 50 features at a time to avoid running out of % memory. Reduce this number if necessary stepSize = 50; assert(mod(hiddenSize, stepSize) == 0, 'stepSize should divide hiddenSize'); load stlTrainSubset.mat % loads numTrainImages, trainImages, trainLabels load stlTestSubset.mat % loads numTestImages, testImages, testLabels pooledFeaturesTrain = zeros(hiddenSize, numTrainImages, ... floor((imageDim - patchDim + 1) / poolDim), ... floor((imageDim - patchDim + 1) / poolDim) ); pooledFeaturesTest = zeros(hiddenSize, numTestImages, ... floor((imageDim - patchDim + 1) / poolDim), ... floor((imageDim - patchDim + 1) / poolDim) ); tic(); %每次仅计算stepSize个特征,之所以这样是因为卷积特征矩阵太大了,为了避免out of memory for convPart = 1:(hiddenSize / stepSize) featureStart = (convPart - 1) * stepSize + 1; %特征起点 featureEnd = convPart * stepSize; %特征终点 fprintf('Step %d: features %d to %d\n', convPart, featureStart, featureEnd); Wt = W(featureStart:featureEnd, :); %取出特征矩阵 bt = b(featureStart:featureEnd); fprintf('Convolving and pooling train images\n'); %计算卷积特征 convolvedFeaturesThis = cnnConvolve(patchDim, stepSize, ... trainImages, Wt, bt, ZCAWhite, meanPatch); pooledFeaturesThis = cnnPool(poolDim, convolvedFeaturesThis); %pooling pooledFeaturesTrain(featureStart:featureEnd, :, :, :) = pooledFeaturesThis; %计算好的特征放进去 toc(); clear convolvedFeaturesThis pooledFeaturesThis; fprintf('Convolving and pooling test images\n'); convolvedFeaturesThis = cnnConvolve(patchDim, stepSize, ... testImages, Wt, bt, ZCAWhite, meanPatch); pooledFeaturesThis = cnnPool(poolDim, convolvedFeaturesThis); pooledFeaturesTest(featureStart:featureEnd, :, :, :) = pooledFeaturesThis; toc(); clear convolvedFeaturesThis pooledFeaturesThis; end % You might want to save the pooled features since convolution and pooling takes a long time save('cnnPooledFeatures.mat', 'pooledFeaturesTrain', 'pooledFeaturesTest'); %load 'cnnPooledFeatures.mat'; toc(); %%====================================================================== %% STEP 4: Use pooled features for classification % Now, you will use your pooled features to train a softmax classifier, % using softmaxTrain from the softmax exercise. % Training the softmax classifer for 1000 iterations should take less than % 10 minutes. % Add the path to your softmax solution, if necessary % addpath /path/to/solution/ % Setup parameters for softmax softmaxLambda = 1e-4; numClasses = 4; % Reshape the pooledFeatures to form an input vector for softmax softmaxX = permute(pooledFeaturesTrain, [1 3 4 2]); softmaxX = reshape(softmaxX, numel(pooledFeaturesTrain) / numTrainImages,... numTrainImages); softmaxY = trainLabels; options = struct; options.maxIter = 200; softmaxModel = softmaxTrain(numel(pooledFeaturesTrain) / numTrainImages,... numClasses, softmaxLambda, softmaxX, softmaxY, options); %%====================================================================== %% STEP 5: Test classifer % Now you will test your trained classifer against the test images softmaxX = permute(pooledFeaturesTest, [1 3 4 2]); softmaxX = reshape(softmaxX, numel(pooledFeaturesTest) / numTestImages, numTestImages); softmaxY = testLabels; [pred] = softmaxPredict(softmaxModel, softmaxX); acc = (pred(:) == softmaxY(:)); acc = sum(acc) / size(acc, 1); fprintf('Accuracy: %2.3f%%\n', acc * 100); % You should expect to get an accuracy of around 80% on the test images.
function convolvedFeatures = cnnConvolve(patchDim, numFeatures, images, W, b, ZCAWhite, meanPatch) %用稀疏自编码学习到的W和b去卷积images %W有400(numFeatures)行,每行是一个变换,可以对image进行卷积 %这样每张图片都能卷积到numFeatures个feature矩阵,叫feature map吧 %cnnConvolve Returns the convolution of the features given by W and b with %the given images % % Parameters: % patchDim - patch (feature) dimension % numFeatures - number of features % images - large images to convolve with, matrix in the form % images(r, c, channel, image number) % W, b - W, b for features from the sparse autoencoder % ZCAWhite, meanPatch - ZCAWhitening and meanPatch matrices used for % preprocessing % % Returns: % convolvedFeatures - matrix of convolved features in the form % convolvedFeatures(featureNum, imageNum, imageRow, imageCol) numImages = size(images, 4); %样本图片 imageDim = size(images, 1); %图片大小 imageChannels = size(images, 3); %图片颜色通道 % 初始化images的卷积特征矩阵,numImages张图片,每张图片numFeataures个卷积矩阵,每个矩阵size为imageDim-patchDim+1 convolvedFeatures = zeros(numFeatures, numImages, imageDim - patchDim + 1, imageDim - patchDim + 1); patchSize = patchDim * patchDim; % Instructions: % Convolve every feature with every large image here to produce the % numFeatures x numImages x (imageDim - patchDim + 1) x (imageDim - patchDim + 1) % matrix convolvedFeatures, such that % convolvedFeatures(featureNum, imageNum, imageRow, imageCol) is the % value of the convolved featureNum feature for the imageNum image over % the region (imageRow, imageCol) to (imageRow + patchDim - 1, imageCol + patchDim - 1) % % Expected running times: % Convolving with 100 images should take less than 3 minutes % Convolving with 5000 images should take around an hour % (So to save time when testing, you should convolve with less images, as % described earlier) % -------------------- YOUR CODE HERE -------------------- % Precompute the matrices that will be used during the convolution. Recall % that you need to take into account the whitening and mean subtraction % steps %W是特征矩阵,每行有patchDim*patchDim*3个元素 W = W*ZCAWhite; b = b - W*meanPatch; % -------------------------------------------------------- convolvedFeatures = zeros(numFeatures, numImages, imageDim - patchDim + 1, imageDim - patchDim + 1); for imageNum = 1:numImages for featureNum = 1:numFeatures % convolution of image with feature matrix for each channel convolvedImage = zeros(imageDim - patchDim + 1, imageDim - patchDim + 1); for channel = 1:3 % Obtain the feature (patchDim x patchDim) needed during the convolution % ---- YOUR CODE HERE ---- feature = zeros(8,8); % You should replace this offset = (channel - 1) * patchSize; %patchSize = patchDim * patchDim feature = reshape(W(featureNum, offset+1:offset+patchSize), patchDim, patchDim); %从W特征矩阵中取出第featureNum个特征的第channel个通道对应的特征 % ------------------------ % Flip the feature matrix because of the definition of convolution, as explained later feature = flipud(fliplr(squeeze(feature))); % Obtain the image im = squeeze(images(:, :, channel, imageNum)); % Convolve "feature" with "im", adding the result to convolvedImage % be sure to do a 'valid' convolution % ---- YOUR CODE HERE ---- convolvedImage = convolvedImage + conv2(im, feature, 'valid'); %把RGB通道的特征响应加起来 % ------------------------ end % Subtract the bias unit (correcting for the mean subtraction as well) % Then, apply the sigmoid function to get the hidden activation % ---- YOUR CODE HERE ---- convolvedImage = sigmoid(convolvedImage + b(featureNum)); % ------------------------ % The convolved feature is the sum of the convolved values for all channels convolvedFeatures(featureNum, imageNum, :, :) = convolvedImage; end end end function sigm = sigmoid(x) sigm = 1 ./ (1 + exp(-x)); end
function pooledFeatures = cnnPool(poolDim, convolvedFeatures) %cnnPool Pools the given convolved features % % Parameters: % poolDim - dimension of pooling region % convolvedFeatures - convolved features to pool (as given by cnnConvolve) % convolvedFeatures(featureNum, imageNum, imageRow, imageCol) % % Returns: % pooledFeatures - matrix of pooled features in the form % pooledFeatures(featureNum, imageNum, poolRow, poolCol) % numImages = size(convolvedFeatures, 2); numFeatures = size(convolvedFeatures, 1); convolvedDim = size(convolvedFeatures, 3); pooledFeatures = zeros(numFeatures, numImages, floor(convolvedDim / poolDim), floor(convolvedDim / poolDim)); % -------------------- YOUR CODE HERE -------------------- % Instructions: % Now pool the convolved features in regions of poolDim x poolDim, % to obtain the % numFeatures x numImages x (convolvedDim/poolDim) x (convolvedDim/poolDim) % matrix pooledFeatures, such that % pooledFeatures(featureNum, imageNum, poolRow, poolCol) is the % value of the featureNum feature for the imageNum image pooled over the % corresponding (poolRow, poolCol) pooling region % (see http://ufldl/wiki/index.php/Pooling ) % % Use mean pooling here. % -------------------- YOUR CODE HERE -------------------- %对poolDim*poolDim的patch进行平均池化 numRows = convolvedDim / poolDim; %池化后总行数 numCols = convolvedDim / poolDim; %池化后总列数 for imageNum = 1:numImages for featureNum = 1:numFeatures for poolRow = 1:numRows for poolCol = 1:numCols pooledFeatures(featureNum, imageNum, poolRow, poolCol) = ... mean(mean(convolvedFeatures(featureNum, imageNum, (poolRow-1)*poolDim+1:poolRow*poolDim, (poolCol-1)*poolDim+1:poolCol*poolDim))); end end end end end