- 刚入门3DGS的新手小白能够做的工作
一碗姜汤
计算机视觉3d计算机视觉
作为刚入门3DGaussianSplatting(3DGS)的新手,你可以从以下几个方向入手,逐步掌握核心概念并参与实践:1.基础学习与工具熟悉(1)理解核心概念必读资料原论文:3DGaussianSplattingforReal-TimeRadianceFieldRendering(Kerbletal.,SIGGRAPH2023)。通俗解读:博客或视频教程(如YouTube解析)。关键点:高斯球
- 对SPM12的认识(二)
对SPM12的认识(二)四、SegmentDataChannel体积(Volumes)偏差正则化(Biasregularisation)偏差的FWHM(BiasFWHM)保存偏差校正图像(SaveBiasCorrected)Tissues组织组织概率图(Tissueprobabilitymap)高斯数(Num.Gaussians)原始组织(NativeTissue)变形组织(WarpedTissu
- 3D Gaussian Splatting综述
三谷秋水
人工智能机器学习计算机视觉3d人工智能机器学习深度学习计算机视觉
24年1月来自浙江大学的论文“3DGaussiansplatting”。3DGaussiansplatting(3DGS)最近成为显式辐射场和计算机图形领域的一项变革性技术。这种创新方法的特点是利用数百万个3D高斯,与神经辐射场(NeRF)方法有很大不同,后者主要使用隐式基于坐标的模型将空间坐标映射到像素值。3DGS具有显式场景表示和可微分渲染算法,不仅保证了实时渲染能力,而且还引入了前所未有的控
- OpenCV计算机视觉实战(12)——图像金字塔与特征缩放
AI technophile
OpenCV项目实践指南计算机视觉opencv人工智能
OpenCV计算机视觉实战(12)——图像金字塔与特征缩放0.前言1.高斯金字塔1.1应用场景1.2实现过程2.拉普拉斯金字塔2.1应用场景2.2实现过程3.图像融合实例3.1应用场景3.2实现过程小结系列链接0.前言图像金字塔技术通过对原始图像按不同分辨率进行多层次表示,不仅能提升计算效率,还能为图像融合、检测与识别提供多尺度特征。高斯金字塔(GaussianPyramid)用于构建多级低通图像
- 349 FPS!开源!CoR-GS:仅需3张图片即可训练Gaussian场景!
3D视觉工坊
3D视觉从入门到精通自动驾驶3d
点击下方卡片,关注「3D视觉工坊」公众号选择星标,干货第一时间送达来源:3D视觉工坊添加小助理:dddvision,备注:方向+学校/公司+昵称,拉你入群。文末附行业细分群扫描下方二维码,加入3D视觉知识星球,星球内凝聚了众多3D视觉实战问题,以及各个模块的学习资料:近20门视频课程(星球成员免费学习)、最新顶会论文、计算机视觉书籍、优质3D视觉算法源码等。想要入门3D视觉、做项目、搞科研,欢迎扫
- 高斯混合模型(Gaussian Mixture Model, GMM)
爱看烟花的码农
ML机器学习概率论人工智能
一、GMM是什么?高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据分布是由多个高斯分布(正态分布)的加权组合构成的。它假设数据点是从若干个高斯分布中生成的,每个高斯分布代表一个“簇”或“子群体”。GMM是一种软聚类方法,与K-Means不同,它不仅能将数据点分配到某个簇,还能给出数据点属于每个簇的概率。1.1核心思想混合模型:GMM认为数据集中的每个数据
- (详细介绍)什么是 Spherical Gaussian(球形高斯分布)
音程
数学数学
文章目录什么是SphericalGaussian?几何意义:为什么叫“球形”?特点总结:应用场景举例:✅示例代码(Python)相关概念对比:SphericalGaussian(球形高斯分布)是概率论与统计学中一个非常常见且重要的概念,尤其在机器学习、信号处理、模式识别等领域有广泛应用。什么是SphericalGaussian?SphericalGaussianDistribution(球形高斯分
- OpenCV——图像的预处理操作 GaussianBlur
&海哥
OpenCVopencv人工智能计算机视觉
实现方式二:高斯模糊目的:对有噪声的图片进行平滑模糊(去噪)操作。常见的噪声类型包括:高斯噪声;椒盐噪声;斑点噪声;水平条纹噪声;噪声抖动;对图像进行去噪操作,就可以通过图形的模糊、平滑来实现。对图像的模糊平滑就是对图像矩阵进行平均的过程。图像平滑处理是一个积分的过程,是通过原图像和一个积分算子进行卷积来实现。高斯模糊函数GaussianBlur功能描述:高斯模糊的原理就是将图像中的每个像素进行加
- 学习Opencv——图像金字塔
JustRemind
CVCVOpenCV
以多个分辨率来表示图像的一种有效且概念简单的结构是图像金字塔,一个图像金字塔是一系列以金子塔形状排列的、分辨率逐渐降低的图像集合。——《数字图像处理》。1.基本概念图像金字塔由Adelson于1984年提出[1],图像金字塔是一个图像集合,集合中所有的图像都源于同一个原始图像,而且是通过对原始图像连续降采样获得,直到达到某个中止条件才停止采样。常用两类图像金字塔:1)高斯金字塔(Gaussianp
- GaussianPro: 3D Gaussian Splatting with Progressive Propagation(Related Work)
于初见月
paper计算机视觉
Multi-viewStereoMVSaimstoreconstructa3Dmodelfromacollectionofposedimages,whichcanbefurthercombinedwithtraditionalrenderingalgorithmstogeneratenovelviews.Traditionalmethodsexplicitlyestablishpixelcorre
- OpenCV CUDA模块图像变形------对图像进行上采样操作函数pyrUp()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述函数用于对图像进行上采样操作(升采样),是GPU加速版本的高斯金字塔向上采样(GaussianPyramidUpsample)。它首先将图像放大为原来的两倍尺寸,并在新插入的像素位置插入零,然后应用一个5x5的高斯核进行平滑处理,从而得到更自然的放大效果。函数原型
- 【高斯拟合最终篇】Levenberg-Marquardt(LM)算法
白码思
算法机器学习人工智能
Levenberg-Marquardt(LM)算法是一种结合高斯-牛顿法和梯度下降法的优化方法,特别适合非线性最小二乘问题,如高斯函数拟合。它通过引入阻尼因子(dampingfactor)平衡高斯-牛顿法的快速收敛和梯度下降法的稳定性。以下是基于之前的gaussian_fit.py,加入LM算法实现高斯拟合的Python示例,包含计算公式、代码和可视化结果,与高斯-牛顿法和梯度下降法的结果对比。计
- 高斯混合模型(GMM)——完整推导与代码实现
Expecto0
机器学习机器学习算法
GaussianMixedModel应用聚类K-means无法处理两个聚类中心点相同的类。比如A∼N(μ, σ12), B∼N(μ,σ22)A\simN(\mu,\;\sigma_1^2),\;B\simN(\mu,\sigma_2^2)A∼N(μ,σ12),B∼N(μ,σ22)是无法用k-means进行聚类的。密度估计新数据的生成原理我们认为数据空间是由某些高斯分布生成的,但对于某一具体的样
- 3D Gaussian splatting 05: 代码阅读-训练整体流程
IOsetting
AlgorithmPython3dgaussianpytorch
目录3DGaussiansplatting01:环境搭建3DGaussiansplatting02:快速评估3DGaussiansplatting03:用户数据训练和结果查看3DGaussiansplatting04:代码阅读-提取相机位姿和稀疏点云3DGaussiansplatting05:代码阅读-训练整体流程3DGaussiansplatting06:代码阅读-训练参数3DGaussians
- 3D Gaussian splatting 06: 代码阅读-训练参数
IOsetting
ComputerVisionPythonAlgorithm3dgaussian
目录3DGaussiansplatting01:环境搭建3DGaussiansplatting02:快速评估3DGaussiansplatting03:用户数据训练和结果查看3DGaussiansplatting04:代码阅读-提取相机位姿和稀疏点云3DGaussiansplatting05:代码阅读-训练整体流程3DGaussiansplatting06:代码阅读-训练参数3DGaussians
- OpenCV 第7课 图像处理之平滑(二)
嵌入式老牛
树莓派之OpenCVopencv图像处理人工智能
1.示例代码importcv2importnumpyasnpimportmatplotlib.pyplotaspltimg=cv2.imread('noise.jpg')blur1=cv2.blur(img,(5,5)) blur2=cv2.GaussianBlur(img,(5,5),1) blur3=cv2.medianBlur(img,5) plt.figure(figsize=(10
- 科研论文术语全解析:彻底搞懂什么是Baseline、Pipeline..........等内容【2025最新版!!!】
那就举个栗子!
计算机视觉解决方案人工智能
引言在撰写科研论文的过程中,尤其是在计算机视觉、机器人、SLAM以及三维重建等领域,准确理解并使用核心术语对于展示研究的科学性、系统性具有至关重要的作用。术语不仅是论文结构的骨架,也是向同行传达研究设计与创新思路的重要桥梁。本文旨在从实际科研写作的角度,系统性分析高频科研术语的定义与应用,帮助初学者准确理解其含义,掌握其写作位置与逻辑,最后以SLAM与3D高斯泼溅(3DGaussianSplatt
- 2D-surfel-gaussian 的安装和配置教程
贡沫苏Truman
2D-surfel-gaussian的安装和配置教程2D-surfel-gaussian项目地址:https://gitcode.com/gh_mirrors/2d/2D-surfel-gaussian1.项目的基础介绍和主要的编程语言2D-surfel-gaussian是一个开源项目,它主要用于2D图像的表面重建。该项目基于表面元素(surfel)的概念,使用高斯分布对图像中的边缘进行建模,进而
- 15-OpenCVSharp —- Cv2.GaussianBlur()函数功能(高斯滤波)详解
X-Vision
#《OpenCV算子系列》计算机视觉opencv人工智能图像处理算法
OpenCV算子专栏OpenCVSharp—Cv2.GaussianBlur()函数详解Cv2.GaussianBlur()是OpenCVSharp中用于图像处理的高斯模糊函数。它的核心功能是通过高斯卷积滤波对图像进行平滑处理,减少噪声,常用于去噪、图像预处理以及边缘检测等任务。1.核心原理与公式高斯模糊的核心原理是对图像进行卷积操作,其中卷积核是基于高斯函数生成的。高斯函数公式:二维高斯函数的数
- 实验笔记之——Ubuntu20.04配置nvidia以及cuda并测试3DGS与SIBR_viewers
gwpscut
3DGaussianSplatting(3DGS)三维重建3DGS
之前博文测试3DGS的时候一直用服务器进行开发,没有用过笔记本,本博文记录下用笔记本ubuntu20.04配置过程~学习笔记之——3DGaussianSplatting源码解读_3dgs运行代码-CSDN博客文章浏览阅读3.2k次,点赞34次,收藏62次。高斯模型的初始化,初始化过程中加载或定义了各种相关的属性使用的球谐阶数、最大球谐阶数、各种张量(_xyz等)、优化器和其他参数。self.act
- OpenCv图像处理: 时域滤波与频域滤波
在撒哈拉卖雨伞
opencv图像处理人工智能
时域滤波:空间域滤波的步骤一般如下:1.选择滤波器选择一种低通滤波器,常见的包括:均值滤波(平均滤波器)高斯滤波(Gaussianfilter)2.定义滤波器核根据选择的滤波器类型,定义相应的滤波器核。例如,对于高斯滤波,可以使用高斯函数创建一个二维核。3.图像边界处理决定如何处理图像边界。常见的方法有:零填充(Zeropadding)镜像扩展(Mirrorpadding)<
- 倾斜摄影已过时?3DGS能否重塑三维重建效率天花板
Mapmost
三维数域3d3DGS信息可视化AIGC
引言数字孪生技术的核心在于构建高保真的虚拟镜像,而3DGaussianSplatting(3DGS)技术为此提供了一种全新的解决方案。其独特的点云渲染方式,能够以更低的计算成本,实现更逼真、更流畅的三维场景重建效果。Mapmost平台在此基础上,致力于进一步拓展3DGS的应用潜力,朝着支持更大规模场景、更快速度重建、更精细要素还原方向逐步迈进,力求为广大用户带来前所未有的高效、智能三维重建体验。在
- OpenCV的CUDA模块进行图像处理
程序小K
目标检测opencv图像处理人工智能
本文介绍了使用OpenCV和CUDA加速的四种图像处理技术:灰度化、高斯模糊、Sobel边缘检测和直方图均衡化。每种技术都通过将图像数据上传到GPU,利用CUDA进行加速处理,最后将结果下载回CPU。灰度化通过cv::cuda::cvtColor实现,高斯模糊使用cv::cuda::createGaussianFilter创建滤波器,Sobel边缘检测通过cv::cuda::createSobel
- 函数讲解知识
万能小贤哥
python机器学习算法支持向量机信息可视化
高斯核函数(GaussianKernelFunction),也称为径向基函数(RadialBasisFunction,RBF)核,是机器学习中常用的一种核函数。以下是关于它的详细介绍:定义与公式对于两个向量\(\mathbf{x}\)和\(\mathbf{z}\),高斯核函数的表达式为:\(K(\mathbf{x},\mathbf{z})=\exp\left(-\frac{\|\mathbf{x}
- 【读论文】3D Gaussian Splatting for Real-Time Radiance Field Rendering
小白有颗大白梦
读论文NeRFNeRF学习NeRF
文章目录1.What:2.Why:3.How:3.1Real-timerendering3.2AdaptiveControlofGaussians3.3Differentiable3DGaussiansplatting4.Self-thoughts1.What:Whatkindofthingisthisarticlegoingtodo(fromtheabstractandconclusion,tr
- 论文翻译:3D Gaussian Splatting for Real-Time Radiance Field Rendering
好脾气先生
视觉重建论文翻译3d
文章目录1介绍2.1传统场景重建与渲染2.2神经渲染与辐射场2.3基于点的渲染和亮度表示3概览4可微高斯抛雪球5带有自适应密度控制的3D高斯优化5.1优化5.2高斯的自适应控制6高斯的快速可微光栅化器7实现,结果和评估7.1实现7.2结果和评估7.3消融研究7.4局限8讨论和结论最近在做三维重建的相关工作,看了原版论文,做了机翻,自己又润色了一下,应该还算通顺,欢迎各位交流批评;(仅仅是重要部分翻
- 如何理解高斯过程:代码篇(复杂版)
向上又向下
贝叶斯优化人工智能python机器学习
先附上开源程序:"""Gaussianprocessesregression."""#Authors:Thescikit-learndevelopers#SPDX-License-Identifier:BSD-3-ClauseimportwarningsfromnumbersimportIntegral,Realfromoperatorimportitemgetterimportnumpyasnp
- 深入理解与实现GM-PHD滤波算法:C++应用指南
快撑死的鱼
算法杂谈C++(C语言)算法大揭秘算法c++开发语言
前言多目标跟踪(Multi-TargetTracking,MTT)是自动驾驶、雷达系统、机器人视觉等领域中的重要技术。高斯混合概率假设密度(GaussianMixtureProbabilityHypothesisDensity,GM-PHD)滤波器作为一种有效的多目标跟踪算法,因其能够在处理杂波和新生目标时表现出色而广受关注。本文将详细介绍GM-PHD滤波算法,并通过C++代码示例展示其实现。希望
- 3DGS源码解读 - duplicateWithKeys 和 RadixSort
Ivan-CG
3DGS人工智能
duplicateWithKeys和RadixSort我们先来看一下duplicateWithKeys和RadixSort的大致流程:图片来源于文献FlashGS:Efficient3DGaussianSplattingforLarge-scaleandHigh-resolutionRenderingduplicateWithKeys部分的关键代码如下://如果radii[idx]0){//每个高
- 自主采集高质量三维重建数据集指南:面向3DGS与NeRF的图像与视频拍摄技巧【2025最新版!!】
那就举个栗子!
计算机视觉解决方案3d音视频
一、✨引言随着三维重建技术的飞速发展,NeRF(NeuralRadianceFields)与3DGaussianSplatting(3DGS)等方法成为重建真实场景和物体几何细节的前沿方案。这些方法在大规模场景建模、机器人感知、文物数字化、工业检测等场景中展现出强大潜力。然而,重建质量的上限不仅取决于算法本身,还深受数据质量的影响。尤其是在没有现成数据集的实际应用中,如何自行拍摄高质量图片与视频,
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数