Longest Ordered Subsequence(最长单调递增子序列)poj2533+动态规划

Longest Ordered Subsequence
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 40309   Accepted: 17743

Description

A numeric sequence of  ai is ordered if  a1 <  a2 < ... <  aN. Let the subsequence of the given numeric sequence ( a1a2, ...,  aN) be any sequence ( ai1ai2, ...,  aiK), where 1 <=  i1 <  i2 < ... <  iK <=  N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

Source

Northeastern Europe 2002, Far-Eastern Subregion



题意:来自于 http://www.cnblogs.com/liyukuneed/archive/2013/05/26/3090402.html

本篇博客要继续解决一个升级的问题——最长递增子序列

问题定义:

给定一个长度为N的数组,找出一个最长的单调自增子序列(不一定连续,但是顺序不能乱)。例如:给定一个长度为6的数组A{5, 6, 7, 1, 2, 8},则其最长的单调递增子序列为{5,6,7,8},长度为4.

解法一:最长公共子序列法:

仔细思考上面的问题,其实可以把上面的问题转化为求最长公共子序列的问题。原数组为A{5, 6, 7, 1, 2, 8},下一步,我们对这个数组进行排序,排序后的数组为A‘{1, 2, 5, 6, 7, 8}。我们有了这样的两个数组后,如果想求数组A的最长递增子序列,其实就是求数组A与它的排序数组A‘的最长公共子序列。我来思考下原问题的几个要素:最长、递增、子序列(即顺序不变)。

递增:A‘数组为排序数组,本身就是递增的,保证了两序列的最长公共子序列的递增特性。

子序列:由于A数组就是原数组,其任意的子序列都是顺序不变的,这样就保证了两序列的最长公共子序列的顺序不变。

最长:显而易见。

 

解法二:动态规划法(O(N^2))

既然是动态规划法,那么最重要的自然就是寻找子问题,对于这个问题,我们找到他的子问题:

对于长度为N的数组A[N] = {a0, a1, a2, ..., an-1},假设假设我们想求以aj结尾的最大递增子序列长度,设为L[j],那么L[j] = max(L[i]) + 1, where i < j && a[i] < a[j], 也就是i的范围是0到j - 1。这样,想求aj结尾的最大递增子序列的长度,我们就需要遍历j之前的所有位置i(0到j-1),找出a[i] < a[j],计算这些i中,能产生最大L[i]的i,之后就可以求出L[j]。之后我对每一个A[N]中的元素都计算以他们各自结尾的最大递增子序列的长度,这些长度的最大值,就是我们要求的问题——数组A的最大递增子序列。

时间复杂度:由于每一次都要与之前的所有i做比较,这样时间复杂度为O(N^2)。

 

解法三:动态规划法(O(NlogN))

上面的解法时间复杂度仍然为O(N^2),与解法一没有明显的差别。仔细分析一下原因,之所以慢,是因为对于每一个新的位置j都需要遍历j之前的所以位置,找出之前位置最长递增子序列长度。那么我们是不是可以有一中方法能不用遍历之前所有的位置,而可以更快的确定i的位置呢?

这就需要申请一个长度为N的空间,B[N],用变量len记录现在的最长递增子序列的长度。

B数组内任意元素B[i],记录的是最长递增子序列长度为i的序列的末尾元素的值,也就是这个最长递增子序列的最大元素的大小值。

首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1

然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1

接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2

再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2

继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。

第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3

第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了

第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。

最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。

于是我们知道了LIS的长度为5。

注意,这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。

然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!

 

根据上面的分析,下面是后两种方法的C++代码实现:


#include<cstdio>
#include<iostream>
using namespace std;
int num[1005];
int main()
{
    int n;
    while(scanf("%d",&n)==1)
    {
        int tmp,mmax;
        scanf("%d",&tmp);
        mmax=tmp;
        int arr[1005];//用来存递增序列,没有实际意义
        arr[0]=tmp;
        int cnt=0;
        for(int i=1;i<n;i++)
        {
            scanf("%d",&tmp);
            if(arr[cnt]<tmp) arr[++cnt]=tmp;
            else if(arr[cnt]>tmp)
            {
                int left=0;
                int right=cnt;
                while(left<=right)//注意要到等号
                {
                    int mid=(left+right)/2;
                    if(arr[mid]<tmp) left=mid+1;
                    if(arr[mid]>tmp) right=mid-1;
                    if(arr[mid]==tmp) {left=mid; break;}
                }
                arr[left]=tmp;
            }
        }
        /**
        for(int i=0;i<=cnt;i++)
        {
            printf("%d ",arr[i]);
        }
        printf("\n");
        */
        printf("%d\n",cnt+1);
    }
    return 0;
}
/**
7
1 7 3 5 9 4 8
10
2 1 3 4 6 100 101 7 8 9
*/


你可能感兴趣的:(动态规划,longest,最长单调递增子序列,ordered,Subs,poj2533)