gtest简介及简单使用

gtest是一个跨平台(Liunx、Mac OS X、Windows、Cygwin、Windows CE and Symbian)的C++测试框架,有google公司发布。gtest测试框架是在不同平台上为编写C++测试而生成的。

从http://code.google.com/p/googletest/downloads/detail?name=gtest-1.7.0.zip&can=2&q=下载最新的gtest-1.7.0版本

 

在Windows下编译gtest步骤:(1)、将gtest-1.7.0.zip进行解压缩;(2)、用vs2010打开msvc目录下的gtest.sln工程,需要进行转换,生成gtest、gtest_main、gtest_prod_test、gtest_unittest四个工程;(3)、分别在Debug和Release下,选中Solution ‘gtest’,点击右键,执行Rebuild Solution,会在msvc/gtest/Debug下生成gtestd.lib、gtest_maind.lib库,在msvc/gtest/Release下生成gtest.lib、gtest_main.lib库。

Widows下举例:(1)、在Solution  ‘gtest’中新建一个Testgtest工程;(2)、新加一个fun.h文件,此文件内容为:

#ifndef _FOO_H_
#define _FOO_H_

int add(int a, int b)
{
	return a + b;
}

#endif//_FOO_H_

(3)、修改工程属性:A、General -> Character Set: Use Multi-Byte Character Set;B、C/C++ -> General -> Additional IncludeDirectories: ../../gtest-1.7.0/include;C、C/C++ -> Code Generation -> Runtime Library: Debug下, Multi-threaded Debug(/MTd) , Release下,Multi-threaded(MT);

(4)、stdafx.h文件内容为:

#pragma once

#include "targetver.h"

#include <stdio.h>

#include "gtest/gtest.h"

(5)、stdafx.cpp文件内容为:

#include "stdafx.h"

#ifdef _DEBUG
	#pragma comment(lib, "../../gtest-1.7.0/msvc/gtest/Debug/gtestd.lib")
	#pragma comment(lib, "../../gtest-1.7.0/msvc/gtest/Debug/gtest_maind.lib")
#else
	#pragma comment(lib, "../../gtest-1.7.0/msvc/gtest/Release/gtest.lib")
	#pragma comment(lib, "../../gtest-1.7.0/msvc/gtest/Release/gtest_main.lib") 
#endif

(6)、Testgtest.cpp文件内容为:

#include "stdafx.h"
#include "fun.h"

TEST(fun, add)
{
	EXPECT_EQ(1, add(2,-1));
	EXPECT_EQ(5, add(2,3));
}

int main(int argc, char* argv[])
{
	::testing::InitGoogleTest(&argc, argv);
	return RUN_ALL_TESTS();
}

运行此工程即可输出相关信息。修改EXPECT_EQ可查看结果值为错误时的输出信息。


在Ubuntu下编译gtest步骤:在gtest-1.7.0.zip目录下,依次执行:unzip gtest-1.7.0.zip ;

cd  gtest-1.7.0 ; ./configure ;  make  ; cd  lib ; mv .libs libs ;此时,会在gtest-1.7.0/lib/libs目录下生成libgtest.a和libgtest_main.a库(说明:gtest-1.7.0/lib下会生成libgtest.la和libgtest_main.la库,.la为libtool生成的共享库,其实是个配置文档。lib下的libs文件刚开始生成时是隐藏文件,需要用mv指令转成正常文件,libs除了libgtest.a和libgtest_main.a库还有其它一些文件,没有什么用,全部删除即可)。

         Ubuntu下举例:(1)、在gtest-1.7.0同一目录下新建一个test文件;(2)、此test文件夹下存放fun.h和gtest_test.cpp文件,fun.h文件内容与Windows下的fun.h内容完全一致;

         (3)、gtest_test.cpp文件内容为:

#include "../gtest-1.7.0/include/gtest/gtest.h"

#include "fun.h"

 

TEST(fun, add)

{

	EXPECT_EQ(1, add(2,-1));

	EXPECT_EQ(5, add(2,3));

}

 

int main(int argc, char** argv)

{

	::testing::InitGoogleTest(&argc, argv);

	return RUN_ALL_TESTS();

}

(4)、将终端定位到/test目录下,输入  g++  -g  gtest_test.cpp -o  gtest_test  -I../gtest-1.7.0/include  -L../gtest-1.7.0/lib/libs  -lgtest  -lgtest_main  -lpthread ;会在/test目录下生成gtest_test执行文件;

(5)、执行 ./gtest_test 输出信息与Windows下一致。


更通用的做法是:不必在每个平台下分别编译生成静态库,可以直接使用/fused-src/gtest下的gtest.h和gtest-all.cc两个文件,此两个文件包含了所有你需要用到的Google Test的东西。如果没有/fuse-src这个文件,可以使用/scripts/fuse_gtest_files.py这个文件生成,操作步骤是:(1)、配置好python;(2)、打开命令提示符,将其定位到/scripts文件夹下,输入命令:python  fuse_gtest_files.py fused_gtest ;会在/scripts文件夹下生成一个fused_gtest/gtest文件,里面包含gtest.h和gtest-all.cc两个文件,此两个文件和/fuse-src中的同名文件内容是完全一致的。


下面是对gtest的一些总结:

1.  TEST(test_case_name, test_name)

TEST_F(test_fixture,test_name)

TEST宏的作用是创建一个简单测试,它定义了一个测试函数,在这个函数里可以使用任何C++代码并使用提供的断言来进行检查。

多个测试场景需要相同数据配置的情况,用TEST_F。

2.  gtest中,断言的宏可以分为两类,一类是ASSERT系列,一类是EXPECT系列。

{ASSERT|EXPECT}_EQ(expected,actual): Tests that expected == actual

{ASSERT|EXPECT}_NE(v1,v2):           Tests that v1 != v2

{ASSERT|EXPECT}_LT(v1,v2):           Tests that v1 < v2

{ASSERT|EXPECT}_LE(v1,v2):           Tests that v1 <= v2

{ASSERT|EXPECT}_GT(v1,v2):           Tests that v1 > v2

{ASSERT|EXPECT}_GE(v1,v2):           Tests that v1 >= v2

EXPECT_*和ASSERT_*的区别:(1)、EXPECT_*失败时,案例继续往下执行;(2)、ASSERT_*失败时,直接在当前函数中返回,当前函数中ASSERT_*后面的语句将不会执行,退出当前函数,并非退出当前案例。

断言:布尔值检查、数值型数据检查、字符串检查、显示成功或失败、异常检查、Predicate Assertions、浮点型检查、Windows HRESULT assertions、类型检查。

3.  ::testing::InitGoogleTest(&argc,argv):gtest的测试案例允许接收一系列的命令行参数,将命令行参数传递给gtest,进行一些初始化操作。gtest的命令行参数非常丰富。

4.  RUN_ALL_TESTS():运行所有测试案例。

5.  可以通过操作符"<<"将一些自定义的信息输出,如在EXPECT_EQ(v1, v2)<< "thisis a error! "

6.  gtest的事件一共有3种:(1)、全局的,所有案例执行前后;(2)、TestSuite级别的,在某一批案例中第一个案例前,最后一个案例执行后;(3)、TestCase级别的,每个TestCase前后。

全局事件:要实现全局事件,必须写一个类,继承testing::Environment类,实现里面的SetUp和TearDown方法。SetUp方法在所有案例执行前执行;TearDown方法在所有案例执行后执行。

TestSuite事件:需要写一个类,继承testing::Test,然后实现两个静态方法:(1)、SetUpTestCase方法在第一个TestCase之前执行;(2)、TearDownTestCase方法在最后一个TestCase之后执行。

TestCase事件:是挂在每个案例执行前后的,需要实现的是SetUp方法和TearDown方法。(1)、SetUp方法在每个TestCase之前执行;(2)、TearDown方法在每个TestCase之后执行。

每个基于gtest的测试过程,是可以分为多个TestSuite级别,而每个TestSuite级别又可以分为多个TestCase级别。这样分层的结构的好处,是可以针对不同的TestSuite级别或者TestCase级别设置不同的参数、事件机制等,并且可以与实际测试的各个模块层级相互对应,便于管理。

7.  参数化:必须添加一个类,继承testing::TestWithParam<T>,其中T就是你需要参数化的参数类型。

8.  编写死亡测试案例时,TEST的第一个参数,即test_case_name,请使用DeathTest后缀,原因是gtest会优先运行死亡测试案例,应该是为线程安全考虑。

9.  testing::AddGlobalTestEnvironment(newFooEnvironment):在main函数中创建和注册全局环境对象。

10.  对于运行参数,gtest提供了三种设置的途径:(1)、系统环境变量;(2)、命令行参数;(3)、代码中指定FLAG。

命令行参数:(1)、--gtest_list_tests:使用这个参数时,将不会执行里面的测试案例,而是输出一个案例的列表;(2)、 --gtest_filter:对执行的测试案例进行过滤,支持通配符;(3)、--gtest_also_run_disabled_tests:执行案例时,同时也执行被置为无效的测试案例;(4)、--gtest_repeat=[COUNT]:设置案例重复运行次数;(5)、--gtest_color=(yes|no|auto):输出命令行时是否使用一些五颜六色的颜色,默认是auto;(6)、--gtest_print_time:输出命令时是否打印每个测试案例的执行时间,默认是不打印的;(7)、--gtest_output=xml[:DIRECTORY_PATH\|:FILE_PATH:将测试结果输出到一个xml中,如—gtest_output=xml:d:\foo.xml  指定输出到d:\foo.xml ,如果不是指定了特定的文件路径,gtest每次输出的报告不会覆盖,而会以数字后缀的方式创建;(8)、--gtest_break_on_failure:调试模式下,当案例失败时停止,方便调试;(9)、--gtest_throw_on_failure:当案例失败时以C++异常的方式抛出;(10)、--gtest_catch_exceptions:是否捕捉异常,gtest默认是不捕捉异常的,这个参数只在Windows下有效。


在gtest-1.7.0/samples的文件夹中有10个gtest的例子,我将其添加到一个工程中,便于查看:

1. 新建一个gtestSamples的工程;

2. 此工程下的文件包括:(1)、gtest/gtest.h;(2)、gtest-all.cc;(3)、fun.h;(4)、fun.cpp;(5)、gtestSamlpes.cpp。

3. gtest.h和gtest-all.cc两个文件为gtest-1.7.0/fused-src中的原始文件;

4. fun.h文件内容为:

#ifndef _FUN_H_
#define _FUN_H_

#include <string.h>
#include <algorithm>

// Returns n! (the factorial of n).  For negative n, n! is defined to be 1.
int Factorial(int n);

// Returns true if n is a prime number.
bool IsPrime(int n);

// A simple string class.
class MyString {
private:
	const char* c_string_;
	const MyString& operator=(const MyString& rhs);

public:
	// Clones a 0-terminated C string, allocating memory using new.
	static const char* CloneCString(const char* a_c_string);

	////////////////////////////////////////////////////////////
	//
	// C'tors

	// The default c'tor constructs a NULL string.
	MyString() : c_string_(NULL) {}

	// Constructs a MyString by cloning a 0-terminated C string.
	explicit MyString(const char* a_c_string) : c_string_(NULL) {
		Set(a_c_string);
	}

	// Copy c'tor
	MyString(const MyString& string) : c_string_(NULL) {
		Set(string.c_string_);
	}

	////////////////////////////////////////////////////////////
	//
	// D'tor.  MyString is intended to be a final class, so the d'tor
	// doesn't need to be virtual.
	~MyString() { delete[] c_string_; }

	// Gets the 0-terminated C string this MyString object represents.
	const char* c_string() const { return c_string_; }

	size_t Length() const {
		return c_string_ == NULL ? 0 : strlen(c_string_);
	}

	// Sets the 0-terminated C string this MyString object represents.
	void Set(const char* c_string);
};

// Queue is a simple queue implemented as a singled-linked list.
//
// The element type must support copy constructor.
template <typename E>  // E is the element type
class Queue;

// QueueNode is a node in a Queue, which consists of an element of
// type E and a pointer to the next node.
template <typename E>  // E is the element type
class QueueNode {
	friend class Queue<E>;

public:
	// Gets the element in this node.
	const E& element() const { return element_; }

	// Gets the next node in the queue.
	QueueNode* next() { return next_; }
	const QueueNode* next() const { return next_; }

private:
	// Creates a node with a given element value.  The next pointer is
	// set to NULL.
	explicit QueueNode(const E& an_element) : element_(an_element), next_(NULL) {}

	// We disable the default assignment operator and copy c'tor.
	const QueueNode& operator = (const QueueNode&);
	QueueNode(const QueueNode&);

	E element_;
	QueueNode* next_;
};

template <typename E>  // E is the element type.
class Queue {
public:
	// Creates an empty queue.
	Queue() : head_(NULL), last_(NULL), size_(0) {}

	// D'tor.  Clears the queue.
	~Queue() { Clear(); }

	// Clears the queue.
	void Clear() {
		if (size_ > 0) {
			// 1. Deletes every node.
			QueueNode<E>* node = head_;
			QueueNode<E>* next = node->next();
			for (; ;) {
				delete node;
				node = next;
				if (node == NULL) break;
				next = node->next();
			}

			// 2. Resets the member variables.
			head_ = last_ = NULL;
			size_ = 0;
		}
	}

	// Gets the number of elements.
	size_t Size() const { return size_; }

	// Gets the first element of the queue, or NULL if the queue is empty.
	QueueNode<E>* Head() { return head_; }
	const QueueNode<E>* Head() const { return head_; }

	// Gets the last element of the queue, or NULL if the queue is empty.
	QueueNode<E>* Last() { return last_; }
	const QueueNode<E>* Last() const { return last_; }

	// Adds an element to the end of the queue.  A copy of the element is
	// created using the copy constructor, and then stored in the queue.
	// Changes made to the element in the queue doesn't affect the source
	// object, and vice versa.
	void Enqueue(const E& element) {
		QueueNode<E>* new_node = new QueueNode<E>(element);

		if (size_ == 0) {
			head_ = last_ = new_node;
			size_ = 1;
		} else {
			last_->next_ = new_node;
			last_ = new_node;
			size_++;
		}
	}

	// Removes the head of the queue and returns it.  Returns NULL if
	// the queue is empty.
	E* Dequeue() {
		if (size_ == 0) {
			return NULL;
		}

		const QueueNode<E>* const old_head = head_;
		head_ = head_->next_;
		size_--;
		if (size_ == 0) {
			last_ = NULL;
		}

		E* element = new E(old_head->element());
		delete old_head;

		return element;
	}

	// Applies a function/functor on each element of the queue, and
	// returns the result in a new queue.  The original queue is not
	// affected.
	template <typename F>
	Queue* Map(F function) const {
		Queue* new_queue = new Queue();
		for (const QueueNode<E>* node = head_; node != NULL; node = node->next_) {
			new_queue->Enqueue(function(node->element()));
		}

		return new_queue;
	}

private:
	QueueNode<E>* head_;  // The first node of the queue.
	QueueNode<E>* last_;  // The last node of the queue.
	size_t size_;  // The number of elements in the queue.

	// We disallow copying a queue.
	Queue(const Queue&);
	const Queue& operator = (const Queue&);
};

// A simple monotonic counter.
class Counter {
private:
	int counter_;

public:
	// Creates a counter that starts at 0.
	Counter() : counter_(0) {}

	// Returns the current counter value, and increments it.
	int Increment();

	// Prints the current counter value to STDOUT.
	void Print() const;
};

// The prime table interface.
class PrimeTable {
public:
	virtual ~PrimeTable() {}

	// Returns true iff n is a prime number.
	virtual bool IsPrime(int n) const = 0;

	// Returns the smallest prime number greater than p; or returns -1
	// if the next prime is beyond the capacity of the table.
	virtual int GetNextPrime(int p) const = 0;
};

// Implementation #1 calculates the primes on-the-fly.
class OnTheFlyPrimeTable : public PrimeTable {
public:
	virtual bool IsPrime(int n) const {
		if (n <= 1) return false;

		for (int i = 2; i*i <= n; i++) {
			// n is divisible by an integer other than 1 and itself.
			if ((n % i) == 0) return false;
		}

		return true;
	}

	virtual int GetNextPrime(int p) const {
		for (int n = p + 1; n > 0; n++) {
			if (IsPrime(n)) return n;
		}

		return -1;
	}
};

// Implementation #2 pre-calculates the primes and stores the result
// in an array.
class PreCalculatedPrimeTable : public PrimeTable {
public:
	// 'max' specifies the maximum number the prime table holds.
	explicit PreCalculatedPrimeTable(int max)
		: is_prime_size_(max + 1), is_prime_(new bool[max + 1]) {
			CalculatePrimesUpTo(max);
	}
	virtual ~PreCalculatedPrimeTable() { delete[] is_prime_; }

	virtual bool IsPrime(int n) const {
		return 0 <= n && n < is_prime_size_ && is_prime_[n];
	}

	virtual int GetNextPrime(int p) const {
		for (int n = p + 1; n < is_prime_size_; n++) {
			if (is_prime_[n]) return n;
		}

		return -1;
	}

private:
	void CalculatePrimesUpTo(int max) {
		::std::fill(is_prime_, is_prime_ + is_prime_size_, true);
		is_prime_[0] = is_prime_[1] = false;

		for (int i = 2; i <= max; i++) {
			if (!is_prime_[i]) continue;

			// Marks all multiples of i (except i itself) as non-prime.
			for (int j = 2*i; j <= max; j += i) {
				is_prime_[j] = false;
			}
		}
	}

	const int is_prime_size_;
	bool* const is_prime_;

	// Disables compiler warning "assignment operator could not be generated."
	void operator=(const PreCalculatedPrimeTable& rhs);
};

#endif//_FUN_H_

fun.cpp文件内容为:

#include "fun.h"
#include <stdio.h>

// Returns n! (the factorial of n).  For negative n, n! is defined to be 1.
int Factorial(int n) {
	int result = 1;
	for (int i = 1; i <= n; i++) {
		result *= i;
	}

	return result;
}

// Returns true if n is a prime number.
bool IsPrime(int n) {
	// Trivial case 1: small numbers
	if (n <= 1) return false;

	// Trivial case 2: even numbers
	if (n % 2 == 0) return n == 2;

	// Now, we have that n is odd and n >= 3.

	// Try to divide n by every odd number i, starting from 3
	for (int i = 3; ; i += 2) {
		// We only have to try i up to the squre root of n
		if (i > n/i) break;

		// Now, we have i <= n/i < n.
		// If n is divisible by i, n is not prime.
		if (n % i == 0) return false;
	}

	// n has no integer factor in the range (1, n), and thus is prime.
	return true;
}

// Clones a 0-terminated C string, allocating memory using new.
const char* MyString::CloneCString(const char* a_c_string) {
	if (a_c_string == NULL) return NULL;

	const size_t len = strlen(a_c_string);
	char* const clone = new char[ len + 1 ];
	memcpy(clone, a_c_string, len + 1);

	return clone;
}

// Sets the 0-terminated C string this MyString object
// represents.
void MyString::Set(const char* a_c_string) {
	// Makes sure this works when c_string == c_string_
	const char* const temp = MyString::CloneCString(a_c_string);
	delete[] c_string_;
	c_string_ = temp;
}

// Returns the current counter value, and increments it.
int Counter::Increment() {
	return counter_++;
}

// Prints the current counter value to STDOUT.
void Counter::Print() const {
	printf("%d", counter_);
}

gtestSamlpes.cpp文件的内容为:

#include "gtest/gtest.h"
#include "fun.h"

#define BRANCH_1 //BRANCH_1 //BRANCH_2 //BRANCH_3

#if defined  BRANCH_1

/*-------------------------------------------TEST macro-----------------------*/
//Sample 1: This sample shows how to write a simple unit test for a function,
// using Google C++ testing framework.
//
// Writing a unit test using Google C++ testing framework is easy as 1-2-3:
// Step 1. Include necessary header files such that the stuff your
// test logic needs is declared.
// Step 2. Use the TEST macro to define your tests.
// Step 3. Call RUN_ALL_TESTS() in main().

// TEST has two parameters: the test case name and the test name.
// After using the macro, you should define your test logic between a
// pair of braces.  You can use a bunch of macros to indicate the
// success or failure of a test.
// The test case name and the test name should both be valid C++
// identifiers.  And you should not use underscore (_) in the names.

// Tests Factorial().
// Tests factorial of negative numbers.
TEST(FactorialTest, Negative) {
	// This test is named "Negative", and belongs to the "FactorialTest"
	// test case.
	EXPECT_EQ(1, Factorial(-5));
	EXPECT_EQ(1, Factorial(-1));
	EXPECT_GT(Factorial(-10), 0);

	// EXPECT_EQ(expected, actual) is the same as
	//
	// EXPECT_TRUE((expected) == (actual))
	//
	// except that it will print both the expected value and the actual
	// value when the assertion fails.  This is very helpful for
	// debugging.  Therefore in this case EXPECT_EQ is preferred.
	//
	// On the other hand, EXPECT_TRUE accepts any Boolean expression,
	// and is thus more general.
}

// Tests factorial of 0.
TEST(FactorialTest, Zero) {
	EXPECT_EQ(1, Factorial(0));
}

// Tests factorial of positive numbers.
TEST(FactorialTest, Positive) {
	EXPECT_EQ(1, Factorial(1));
	EXPECT_EQ(2, Factorial(2));
	EXPECT_EQ(6, Factorial(3));
	EXPECT_EQ(40320, Factorial(8));
}

// Tests IsPrime()
// Tests negative input.
TEST(IsPrimeTest, Negative) {
	// This test belongs to the IsPrimeTest test case.

	EXPECT_FALSE(IsPrime(-1));
	EXPECT_FALSE(IsPrime(-2));
	EXPECT_FALSE(IsPrime(INT_MIN));
}

// Tests some trivial cases.
TEST(IsPrimeTest, Trivial) {
	EXPECT_FALSE(IsPrime(0));
	EXPECT_FALSE(IsPrime(1));
	EXPECT_TRUE(IsPrime(2));
	EXPECT_TRUE(IsPrime(3));
}

// Tests positive input.
TEST(IsPrimeTest, Positive) {
	EXPECT_FALSE(IsPrime(4));
	EXPECT_TRUE(IsPrime(5));
	EXPECT_FALSE(IsPrime(6));
	EXPECT_TRUE(IsPrime(23));
}

//Sample 2: This sample shows how to write a more complex unit test for a class
// that has multiple member functions.
//
// Usually, it's a good idea to have one test for each method in your
// class.  You don't have to do that exactly, but it helps to keep
// your tests organized.  You may also throw in additional tests as
// needed.

// Tests the default c'tor.
TEST(MyString, DefaultConstructor) {
	const MyString s;

	// Asserts that s.c_string() returns NULL.
	//
	// If we write NULL instead of
	//
	//   static_cast<const char *>(NULL)
	//
	// in this assertion, it will generate a warning on gcc 3.4.  The
	// reason is that EXPECT_EQ needs to know the types of its
	// arguments in order to print them when it fails.  Since NULL is
	// #defined as 0, the compiler will use the formatter function for
	// int to print it.  However, gcc thinks that NULL should be used as
	// a pointer, not an int, and therefore complains.
	//
	// The root of the problem is C++'s lack of distinction between the
	// integer number 0 and the null pointer constant.  Unfortunately,
	// we have to live with this fact.
	EXPECT_STREQ(NULL, s.c_string());

	EXPECT_EQ(0u, s.Length());
}

const char kHelloString[] = "Hello, world!";

// Tests the c'tor that accepts a C string.
TEST(MyString, ConstructorFromCString) {
	const MyString s(kHelloString);
	EXPECT_EQ(0, strcmp(s.c_string(), kHelloString));
	EXPECT_EQ(sizeof(kHelloString)/sizeof(kHelloString[0]) - 1,
		s.Length());
}

// Tests the copy c'tor.
TEST(MyString, CopyConstructor) {
	const MyString s1(kHelloString);
	const MyString s2 = s1;
	EXPECT_EQ(0, strcmp(s2.c_string(), kHelloString));
}

// Tests the Set method.
TEST(MyString, Set) {
	MyString s;

	s.Set(kHelloString);
	EXPECT_EQ(0, strcmp(s.c_string(), kHelloString));

	// Set should work when the input pointer is the same as the one
	// already in the MyString object.
	s.Set(s.c_string());
	EXPECT_EQ(0, strcmp(s.c_string(), kHelloString));

	// Can we set the MyString to NULL?
	s.Set(NULL);
	EXPECT_STREQ(NULL, s.c_string());
}

//Sample 4: another basic example of using Google Test
// Tests the Increment() method.
TEST(Counter, Increment) {
	Counter c;

	// EXPECT_EQ() evaluates its arguments exactly once, so they
	// can have side effects.

	EXPECT_EQ(0, c.Increment());
	EXPECT_EQ(1, c.Increment());
	EXPECT_EQ(2, c.Increment());
}

/*------------------------------------TEST_F macro------------------------------------*/
//Sample 3: In this example, we use a more advanced feature of Google Test called
// test fixture.
//
// A test fixture is a place to hold objects and functions shared by
// all tests in a test case.  Using a test fixture avoids duplicating
// the test code necessary to initialize and cleanup those common
// objects for each test.  It is also useful for defining sub-routines
// that your tests need to invoke a lot.
//
// The tests share the test fixture in the sense of code sharing, not
// data sharing.  Each test is given its own fresh copy of the
// fixture.  You cannot expect the data modified by one test to be
// passed on to another test, which is a bad idea.
//
// The reason for this design is that tests should be independent and
// repeatable.  In particular, a test should not fail as the result of
// another test's failure.  If one test depends on info produced by
// another test, then the two tests should really be one big test.
//
// The macros for indicating the success/failure of a test
// (EXPECT_TRUE, FAIL, etc) need to know what the current test is
// (when Google Test prints the test result, it tells you which test
// each failure belongs to).  Technically, these macros invoke a
// member function of the Test class.  Therefore, you cannot use them
// in a global function.  That's why you should put test sub-routines
// in a test fixture.

// To use a test fixture, derive a class from testing::Test.
class QueueTest : public testing::Test {
protected:  // You should make the members protected s.t. they can be
	// accessed from sub-classes.

	// virtual void SetUp() will be called before each test is run.  You
	// should define it if you need to initialize the varaibles.
	// Otherwise, this can be skipped.
	virtual void SetUp() {
		q1_.Enqueue(1);
		q2_.Enqueue(2);
		q2_.Enqueue(3);
	}

	// virtual void TearDown() will be called after each test is run.
	// You should define it if there is cleanup work to do.  Otherwise,
	// you don't have to provide it.
	//
	// virtual void TearDown() {
	// }

	// A helper function that some test uses.
	static int Double(int n) {
		return 2*n;
	}

	// A helper function for testing Queue::Map().
	void MapTester(const Queue<int> * q) {
		// Creates a new queue, where each element is twice as big as the
		// corresponding one in q.
		const Queue<int> * const new_q = q->Map(Double);

		// Verifies that the new queue has the same size as q.
		ASSERT_EQ(q->Size(), new_q->Size());

		// Verifies the relationship between the elements of the two queues.
		for ( const QueueNode<int> * n1 = q->Head(), * n2 = new_q->Head();
			n1 != NULL; n1 = n1->next(), n2 = n2->next() ) {
				EXPECT_EQ(2 * n1->element(), n2->element());
		}

		delete new_q;
	}

	// Declares the variables your tests want to use.
	Queue<int> q0_;
	Queue<int> q1_;
	Queue<int> q2_;
};

// When you have a test fixture, you define a test using TEST_F
// instead of TEST.
// Tests the default c'tor.
TEST_F(QueueTest, DefaultConstructor) {
	// You can access data in the test fixture here.
	EXPECT_EQ(0u, q0_.Size());
}

// Tests Dequeue().
TEST_F(QueueTest, Dequeue) {
	int * n = q0_.Dequeue();
	EXPECT_TRUE(n == NULL);

	n = q1_.Dequeue();
	ASSERT_TRUE(n != NULL);
	EXPECT_EQ(1, *n);
	EXPECT_EQ(0u, q1_.Size());
	delete n;

	n = q2_.Dequeue();
	ASSERT_TRUE(n != NULL);
	EXPECT_EQ(2, *n);
	EXPECT_EQ(1u, q2_.Size());
	delete n;
}

// Tests the Queue::Map() function.
TEST_F(QueueTest, Map) {
	MapTester(&q0_);
	MapTester(&q1_);
	MapTester(&q2_);
}

// Sample 5: This sample teaches how to reuse a test fixture in multiple test
// cases by deriving sub-fixtures from it.
//
// When you define a test fixture, you specify the name of the test
// case that will use this fixture.  Therefore, a test fixture can
// be used by only one test case.
//
// Sometimes, more than one test cases may want to use the same or
// slightly different test fixtures.  For example, you may want to
// make sure that all tests for a GUI library don't leak important
// system resources like fonts and brushes.  In Google Test, you do
// this by putting the shared logic in a super (as in "super class")
// test fixture, and then have each test case use a fixture derived
// from this super fixture.

// In this sample, we want to ensure that every test finishes within
// ~5 seconds.  If a test takes longer to run, we consider it a
// failure.
//
// We put the code for timing a test in a test fixture called
// "QuickTest".  QuickTest is intended to be the super fixture that
// other fixtures derive from, therefore there is no test case with
// the name "QuickTest".  This is OK.
//
// Later, we will derive multiple test fixtures from QuickTest.
class QuickTest : public testing::Test {
protected:
	// Remember that SetUp() is run immediately before a test starts.
	// This is a good place to record the start time.
	virtual void SetUp() {
		start_time_ = time(NULL);
	}

	// TearDown() is invoked immediately after a test finishes.  Here we
	// check if the test was too slow.
	virtual void TearDown() {
		// Gets the time when the test finishes
		const time_t end_time = time(NULL);

		// Asserts that the test took no more than ~5 seconds.  Did you
		// know that you can use assertions in SetUp() and TearDown() as
		// well?
		EXPECT_TRUE(end_time - start_time_ <= 5) << "The test took too long.";
	}

	// The UTC time (in seconds) when the test starts
	time_t start_time_;
};

// We derive a fixture named IntegerFunctionTest from the QuickTest
// fixture.  All tests using this fixture will be automatically
// required to be quick.
class IntegerFunctionTest : public QuickTest {
	// We don't need any more logic than already in the QuickTest fixture.
	// Therefore the body is empty.
};

// Now we can write tests in the IntegerFunctionTest test case.

// Tests Factorial()
TEST_F(IntegerFunctionTest, Factorial) {
	// Tests factorial of negative numbers.
	EXPECT_EQ(1, Factorial(-5));
	EXPECT_EQ(1, Factorial(-1));
	EXPECT_GT(Factorial(-10), 0);

	// Tests factorial of 0.
	EXPECT_EQ(1, Factorial(0));

	// Tests factorial of positive numbers.
	EXPECT_EQ(1, Factorial(1));
	EXPECT_EQ(2, Factorial(2));
	EXPECT_EQ(6, Factorial(3));
	EXPECT_EQ(40320, Factorial(8));
}

// Tests IsPrime()
TEST_F(IntegerFunctionTest, IsPrime) {
	// Tests negative input.
	EXPECT_FALSE(IsPrime(-1));
	EXPECT_FALSE(IsPrime(-2));
	EXPECT_FALSE(IsPrime(INT_MIN));

	// Tests some trivial cases.
	EXPECT_FALSE(IsPrime(0));
	EXPECT_FALSE(IsPrime(1));
	EXPECT_TRUE(IsPrime(2));
	EXPECT_TRUE(IsPrime(3));

	// Tests positive input.
	EXPECT_FALSE(IsPrime(4));
	EXPECT_TRUE(IsPrime(5));
	EXPECT_FALSE(IsPrime(6));
	EXPECT_TRUE(IsPrime(23));
}

// The next test case (named "QueueTest") also needs to be quick, so
// we derive another fixture from QuickTest.
//
// The QueueTest test fixture has some logic and shared objects in
// addition to what's in QuickTest already.  We define the additional
// stuff inside the body of the test fixture, as usual.
class QueueTest1 : public QuickTest {
protected:
	virtual void SetUp() {
		// First, we need to set up the super fixture (QuickTest).
		QuickTest::SetUp();

		// Second, some additional setup for this fixture.
		q1_.Enqueue(1);
		q2_.Enqueue(2);
		q2_.Enqueue(3);
	}

	// By default, TearDown() inherits the behavior of
	// QuickTest::TearDown().  As we have no additional cleaning work
	// for QueueTest, we omit it here.
	//
	// virtual void TearDown() {
	//   QuickTest::TearDown();
	// }

	Queue<int> q0_;
	Queue<int> q1_;
	Queue<int> q2_;
};

// Now, let's write tests using the QueueTest fixture.

// Tests the default constructor.
TEST_F(QueueTest1, DefaultConstructor) {
	EXPECT_EQ(0u, q0_.Size());
}

// Tests Dequeue().
TEST_F(QueueTest1, Dequeue) {
	int* n = q0_.Dequeue();
	EXPECT_TRUE(n == NULL);

	n = q1_.Dequeue();
	EXPECT_TRUE(n != NULL);
	EXPECT_EQ(1, *n);
	EXPECT_EQ(0u, q1_.Size());
	delete n;

	n = q2_.Dequeue();
	EXPECT_TRUE(n != NULL);
	EXPECT_EQ(2, *n);
	EXPECT_EQ(1u, q2_.Size());
	delete n;
}

/*-------------------TYPED_TEST macro and TYPED_TEST_P macro------------------*/
//Sample 6: This sample shows how to test common properties of multiple
// implementations of the same interface (aka interface tests).

// First, we define some factory functions for creating instances of
// the implementations.  You may be able to skip this step if all your
// implementations can be constructed the same way.

template <class T>
PrimeTable* CreatePrimeTable();

template <>
PrimeTable* CreatePrimeTable<OnTheFlyPrimeTable>() {
	return new OnTheFlyPrimeTable;
}

template <>
PrimeTable* CreatePrimeTable<PreCalculatedPrimeTable>() {
	return new PreCalculatedPrimeTable(10000);
}

// Then we define a test fixture class template.
template <class T>
class PrimeTableTest : public testing::Test {
protected:
	// The ctor calls the factory function to create a prime table
	// implemented by T.
	PrimeTableTest() : table_(CreatePrimeTable<T>()) {}

	virtual ~PrimeTableTest() { delete table_; }

	// Note that we test an implementation via the base interface
	// instead of the actual implementation class.  This is important
	// for keeping the tests close to the real world scenario, where the
	// implementation is invoked via the base interface.  It avoids
	// got-yas where the implementation class has a method that shadows
	// a method with the same name (but slightly different argument
	// types) in the base interface, for example.
	PrimeTable* const table_;
};

#if GTEST_HAS_TYPED_TEST

using testing::Types;

// Google Test offers two ways for reusing tests for different types.
// The first is called "typed tests".  You should use it if you
// already know *all* the types you are gonna exercise when you write
// the tests.

// To write a typed test case, first use
//
//   TYPED_TEST_CASE(TestCaseName, TypeList);
//
// to declare it and specify the type parameters.  As with TEST_F,
// TestCaseName must match the test fixture name.

// The list of types we want to test.
typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable> Implementations;

TYPED_TEST_CASE(PrimeTableTest, Implementations);

// Then use TYPED_TEST(TestCaseName, TestName) to define a typed test,
// similar to TEST_F.
TYPED_TEST(PrimeTableTest, ReturnsFalseForNonPrimes) {
	// Inside the test body, you can refer to the type parameter by
	// TypeParam, and refer to the fixture class by TestFixture.  We
	// don't need them in this example.

	// Since we are in the template world, C++ requires explicitly
	// writing 'this->' when referring to members of the fixture class.
	// This is something you have to learn to live with.
	EXPECT_FALSE(this->table_->IsPrime(-5));
	EXPECT_FALSE(this->table_->IsPrime(0));
	EXPECT_FALSE(this->table_->IsPrime(1));
	EXPECT_FALSE(this->table_->IsPrime(4));
	EXPECT_FALSE(this->table_->IsPrime(6));
	EXPECT_FALSE(this->table_->IsPrime(100));
}

TYPED_TEST(PrimeTableTest, ReturnsTrueForPrimes) {
	EXPECT_TRUE(this->table_->IsPrime(2));
	EXPECT_TRUE(this->table_->IsPrime(3));
	EXPECT_TRUE(this->table_->IsPrime(5));
	EXPECT_TRUE(this->table_->IsPrime(7));
	EXPECT_TRUE(this->table_->IsPrime(11));
	EXPECT_TRUE(this->table_->IsPrime(131));
}

TYPED_TEST(PrimeTableTest, CanGetNextPrime) {
	EXPECT_EQ(2, this->table_->GetNextPrime(0));
	EXPECT_EQ(3, this->table_->GetNextPrime(2));
	EXPECT_EQ(5, this->table_->GetNextPrime(3));
	EXPECT_EQ(7, this->table_->GetNextPrime(5));
	EXPECT_EQ(11, this->table_->GetNextPrime(7));
	EXPECT_EQ(131, this->table_->GetNextPrime(128));
}

// That's it!  Google Test will repeat each TYPED_TEST for each type
// in the type list specified in TYPED_TEST_CASE.  Sit back and be
// happy that you don't have to define them multiple times.

#endif  // GTEST_HAS_TYPED_TEST

#if GTEST_HAS_TYPED_TEST_P

using testing::Types;

// Sometimes, however, you don't yet know all the types that you want
// to test when you write the tests.  For example, if you are the
// author of an interface and expect other people to implement it, you
// might want to write a set of tests to make sure each implementation
// conforms to some basic requirements, but you don't know what
// implementations will be written in the future.
//
// How can you write the tests without committing to the type
// parameters?  That's what "type-parameterized tests" can do for you.
// It is a bit more involved than typed tests, but in return you get a
// test pattern that can be reused in many contexts, which is a big
// win.  Here's how you do it:

// First, define a test fixture class template.  Here we just reuse
// the PrimeTableTest fixture defined earlier:

template <class T>
class PrimeTableTest2 : public PrimeTableTest<T> {
};

// Then, declare the test case.  The argument is the name of the test
// fixture, and also the name of the test case (as usual).  The _P
// suffix is for "parameterized" or "pattern".
TYPED_TEST_CASE_P(PrimeTableTest2);

// Next, use TYPED_TEST_P(TestCaseName, TestName) to define a test,
// similar to what you do with TEST_F.
TYPED_TEST_P(PrimeTableTest2, ReturnsFalseForNonPrimes) {
	EXPECT_FALSE(this->table_->IsPrime(-5));
	EXPECT_FALSE(this->table_->IsPrime(0));
	EXPECT_FALSE(this->table_->IsPrime(1));
	EXPECT_FALSE(this->table_->IsPrime(4));
	EXPECT_FALSE(this->table_->IsPrime(6));
	EXPECT_FALSE(this->table_->IsPrime(100));
}

TYPED_TEST_P(PrimeTableTest2, ReturnsTrueForPrimes) {
	EXPECT_TRUE(this->table_->IsPrime(2));
	EXPECT_TRUE(this->table_->IsPrime(3));
	EXPECT_TRUE(this->table_->IsPrime(5));
	EXPECT_TRUE(this->table_->IsPrime(7));
	EXPECT_TRUE(this->table_->IsPrime(11));
	EXPECT_TRUE(this->table_->IsPrime(131));
}

TYPED_TEST_P(PrimeTableTest2, CanGetNextPrime) {
	EXPECT_EQ(2, this->table_->GetNextPrime(0));
	EXPECT_EQ(3, this->table_->GetNextPrime(2));
	EXPECT_EQ(5, this->table_->GetNextPrime(3));
	EXPECT_EQ(7, this->table_->GetNextPrime(5));
	EXPECT_EQ(11, this->table_->GetNextPrime(7));
	EXPECT_EQ(131, this->table_->GetNextPrime(128));
}

// Type-parameterized tests involve one extra step: you have to
// enumerate the tests you defined:
REGISTER_TYPED_TEST_CASE_P(
	PrimeTableTest2,  // The first argument is the test case name.
	// The rest of the arguments are the test names.
	ReturnsFalseForNonPrimes, ReturnsTrueForPrimes, CanGetNextPrime);

// At this point the test pattern is done.  However, you don't have
// any real test yet as you haven't said which types you want to run
// the tests with.

// To turn the abstract test pattern into real tests, you instantiate
// it with a list of types.  Usually the test pattern will be defined
// in a .h file, and anyone can #include and instantiate it.  You can
// even instantiate it more than once in the same program.  To tell
// different instances apart, you give each of them a name, which will
// become part of the test case name and can be used in test filters.

// The list of types we want to test.  Note that it doesn't have to be
// defined at the time we write the TYPED_TEST_P()s.
typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable>
	PrimeTableImplementations;
INSTANTIATE_TYPED_TEST_CASE_P(OnTheFlyAndPreCalculated,    // Instance name
	PrimeTableTest2,             // Test case name
	PrimeTableImplementations);  // Type list

#endif  // GTEST_HAS_TYPED_TEST_P

/*-----------------------------TEST_P macro--------------------------------*/
//Sample 7: This sample shows how to test common properties of multiple
// implementations of an interface (aka interface tests) using
// value-parameterized tests. Each test in the test case has
// a parameter that is an interface pointer to an implementation
// tested.

#if GTEST_HAS_PARAM_TEST

using ::testing::TestWithParam;
using ::testing::Values;

// As a general rule, to prevent a test from affecting the tests that come
// after it, you should create and destroy the tested objects for each test
// instead of reusing them.  In this sample we will define a simple factory
// function for PrimeTable objects.  We will instantiate objects in test's
// SetUp() method and delete them in TearDown() method.
typedef PrimeTable* CreatePrimeTableFunc();

PrimeTable* CreateOnTheFlyPrimeTable() {
	return new OnTheFlyPrimeTable();
}

template <size_t max_precalculated>
PrimeTable* CreatePreCalculatedPrimeTable() {
	return new PreCalculatedPrimeTable(max_precalculated);
}

// Inside the test body, fixture constructor, SetUp(), and TearDown() you
// can refer to the test parameter by GetParam().  In this case, the test
// parameter is a factory function which we call in fixture's SetUp() to
// create and store an instance of PrimeTable.
class PrimeTableTest1 : public TestWithParam<CreatePrimeTableFunc*> {
public:
	virtual ~PrimeTableTest1() { delete table_; }
	virtual void SetUp() { table_ = (*GetParam())(); }
	virtual void TearDown() {
		delete table_;
		table_ = NULL;
	}

protected:
	PrimeTable* table_;
};

TEST_P(PrimeTableTest1, ReturnsFalseForNonPrimes) {
	EXPECT_FALSE(table_->IsPrime(-5));
	EXPECT_FALSE(table_->IsPrime(0));
	EXPECT_FALSE(table_->IsPrime(1));
	EXPECT_FALSE(table_->IsPrime(4));
	EXPECT_FALSE(table_->IsPrime(6));
	EXPECT_FALSE(table_->IsPrime(100));
}

TEST_P(PrimeTableTest1, ReturnsTrueForPrimes) {
	EXPECT_TRUE(table_->IsPrime(2));
	EXPECT_TRUE(table_->IsPrime(3));
	EXPECT_TRUE(table_->IsPrime(5));
	EXPECT_TRUE(table_->IsPrime(7));
	EXPECT_TRUE(table_->IsPrime(11));
	EXPECT_TRUE(table_->IsPrime(131));
}

TEST_P(PrimeTableTest1, CanGetNextPrime) {
	EXPECT_EQ(2, table_->GetNextPrime(0));
	EXPECT_EQ(3, table_->GetNextPrime(2));
	EXPECT_EQ(5, table_->GetNextPrime(3));
	EXPECT_EQ(7, table_->GetNextPrime(5));
	EXPECT_EQ(11, table_->GetNextPrime(7));
	EXPECT_EQ(131, table_->GetNextPrime(128));
}

// In order to run value-parameterized tests, you need to instantiate them,
// or bind them to a list of values which will be used as test parameters.
// You can instantiate them in a different translation module, or even
// instantiate them several times.
//
// Here, we instantiate our tests with a list of two PrimeTable object
// factory functions:
INSTANTIATE_TEST_CASE_P(
	OnTheFlyAndPreCalculated,
	PrimeTableTest1,
	Values(&CreateOnTheFlyPrimeTable, &CreatePreCalculatedPrimeTable<1000>));

#else

// Google Test may not support value-parameterized tests with some
// compilers. If we use conditional compilation to compile out all
// code referring to the gtest_main library, MSVC linker will not link
// that library at all and consequently complain about missing entry
// point defined in that library (fatal error LNK1561: entry point
// must be defined). This dummy test keeps gtest_main linked in.
TEST(DummyTest, ValueParameterizedTestsAreNotSupportedOnThisPlatform) {}

#endif  // GTEST_HAS_PARAM_TEST

// Sample 8: This sample shows how to test code relying on some global flag variables.
// Combine() helps with generating all possible combinations of such flags,
// and each test is given one combination as a parameter.

#if GTEST_HAS_COMBINE

// Suppose we want to introduce a new, improved implementation of PrimeTable
// which combines speed of PrecalcPrimeTable and versatility of
// OnTheFlyPrimeTable (see prime_tables.h). Inside it instantiates both
// PrecalcPrimeTable and OnTheFlyPrimeTable and uses the one that is more
// appropriate under the circumstances. But in low memory conditions, it can be
// told to instantiate without PrecalcPrimeTable instance at all and use only
// OnTheFlyPrimeTable.
class HybridPrimeTable : public PrimeTable {
public:
	HybridPrimeTable(bool force_on_the_fly, int max_precalculated)
		: on_the_fly_impl_(new OnTheFlyPrimeTable),
		precalc_impl_(force_on_the_fly ? NULL :
		new PreCalculatedPrimeTable(max_precalculated)),
		max_precalculated_(max_precalculated) {}
	virtual ~HybridPrimeTable() {
		delete on_the_fly_impl_;
		delete precalc_impl_;
	}

	virtual bool IsPrime(int n) const {
		if (precalc_impl_ != NULL && n < max_precalculated_)
			return precalc_impl_->IsPrime(n);
		else
			return on_the_fly_impl_->IsPrime(n);
	}

	virtual int GetNextPrime(int p) const {
		int next_prime = -1;
		if (precalc_impl_ != NULL && p < max_precalculated_)
			next_prime = precalc_impl_->GetNextPrime(p);

		return next_prime != -1 ? next_prime : on_the_fly_impl_->GetNextPrime(p);
	}

private:
	OnTheFlyPrimeTable* on_the_fly_impl_;
	PreCalculatedPrimeTable* precalc_impl_;
	int max_precalculated_;
};

using ::testing::TestWithParam;
using ::testing::Bool;
using ::testing::Values;
using ::testing::Combine;

// To test all code paths for HybridPrimeTable we must test it with numbers
// both within and outside PreCalculatedPrimeTable's capacity and also with
// PreCalculatedPrimeTable disabled. We do this by defining fixture which will
// accept different combinations of parameters for instantiating a
// HybridPrimeTable instance.
class PrimeTableTest3 : public TestWithParam< ::std::tr1::tuple<bool, int> > {
protected:
	virtual void SetUp() {
		// This can be written as
		//
		// bool force_on_the_fly;
		// int max_precalculated;
		// tie(force_on_the_fly, max_precalculated) = GetParam();
		//
		// once the Google C++ Style Guide allows use of ::std::tr1::tie.
		//
		bool force_on_the_fly = ::std::tr1::get<0>(GetParam());
		int max_precalculated = ::std::tr1::get<1>(GetParam());
		table_ = new HybridPrimeTable(force_on_the_fly, max_precalculated);
	}
	virtual void TearDown() {
		delete table_;
		table_ = NULL;
	}
	HybridPrimeTable* table_;
};

TEST_P(PrimeTableTest3, ReturnsFalseForNonPrimes) {
	// Inside the test body, you can refer to the test parameter by GetParam().
	// In this case, the test parameter is a PrimeTable interface pointer which
	// we can use directly.
	// Please note that you can also save it in the fixture's SetUp() method
	// or constructor and use saved copy in the tests.

	EXPECT_FALSE(table_->IsPrime(-5));
	EXPECT_FALSE(table_->IsPrime(0));
	EXPECT_FALSE(table_->IsPrime(1));
	EXPECT_FALSE(table_->IsPrime(4));
	EXPECT_FALSE(table_->IsPrime(6));
	EXPECT_FALSE(table_->IsPrime(100));
}

TEST_P(PrimeTableTest3, ReturnsTrueForPrimes) {
	EXPECT_TRUE(table_->IsPrime(2));
	EXPECT_TRUE(table_->IsPrime(3));
	EXPECT_TRUE(table_->IsPrime(5));
	EXPECT_TRUE(table_->IsPrime(7));
	EXPECT_TRUE(table_->IsPrime(11));
	EXPECT_TRUE(table_->IsPrime(131));
}

TEST_P(PrimeTableTest3, CanGetNextPrime) {
	EXPECT_EQ(2, table_->GetNextPrime(0));
	EXPECT_EQ(3, table_->GetNextPrime(2));
	EXPECT_EQ(5, table_->GetNextPrime(3));
	EXPECT_EQ(7, table_->GetNextPrime(5));
	EXPECT_EQ(11, table_->GetNextPrime(7));
	EXPECT_EQ(131, table_->GetNextPrime(128));
}

// In order to run value-parameterized tests, you need to instantiate them,
// or bind them to a list of values which will be used as test parameters.
// You can instantiate them in a different translation module, or even
// instantiate them several times.
//
// Here, we instantiate our tests with a list of parameters. We must combine
// all variations of the boolean flag suppressing PrecalcPrimeTable and some
// meaningful values for tests. We choose a small value (1), and a value that
// will put some of the tested numbers beyond the capability of the
// PrecalcPrimeTable instance and some inside it (10). Combine will produce all
// possible combinations.
INSTANTIATE_TEST_CASE_P(MeaningfulTestParameters,
	PrimeTableTest3,
	Combine(Bool(), Values(1, 10)));

#else

// Google Test may not support Combine() with some compilers. If we
// use conditional compilation to compile out all code referring to
// the gtest_main library, MSVC linker will not link that library at
// all and consequently complain about missing entry point defined in
// that library (fatal error LNK1561: entry point must be
// defined). This dummy test keeps gtest_main linked in.
TEST(DummyTest, CombineIsNotSupportedOnThisPlatform) {}

#endif  // GTEST_HAS_COMBINE

int main (int argc, char* argv[])
{
	testing::InitGoogleTest(&argc, argv);
	//::testing::GTEST_FLAG(filter) = "IsPrimeTest.*:FactorialTest.*";
	return RUN_ALL_TESTS();

	return 0;
}

#endif 

#if defined BRANCH_2
// Sample 9: This sample shows how to use Google Test listener API to implement
// an alternative console output and how to use the UnitTest reflection API
// to enumerate test cases and tests and to inspect their results.
using ::testing::EmptyTestEventListener;
using ::testing::InitGoogleTest;
using ::testing::Test;
using ::testing::TestCase;
using ::testing::TestEventListeners;
using ::testing::TestInfo;
using ::testing::TestPartResult;
using ::testing::UnitTest;

namespace {

	// Provides alternative output mode which produces minimal amount of
	// information about tests.
	class TersePrinter : public EmptyTestEventListener {
	private:
		// Called before any test activity starts.
		virtual void OnTestProgramStart(const UnitTest& /* unit_test */) {}

		// Called after all test activities have ended.
		virtual void OnTestProgramEnd(const UnitTest& unit_test) {
			fprintf(stdout, "TEST %s\n", unit_test.Passed() ? "PASSED" : "FAILED");
			fflush(stdout);
		}

		// Called before a test starts.
		virtual void OnTestStart(const TestInfo& test_info) {
			fprintf(stdout,
				"*** Test %s.%s starting.\n",
				test_info.test_case_name(),
				test_info.name());
			fflush(stdout);
		}

		// Called after a failed assertion or a SUCCEED() invocation.
		virtual void OnTestPartResult(const TestPartResult& test_part_result) {
			fprintf(stdout,
				"%s in %s:%d\n%s\n",
				test_part_result.failed() ? "*** Failure" : "Success",
				test_part_result.file_name(),
				test_part_result.line_number(),
				test_part_result.summary());
			fflush(stdout);
		}

		// Called after a test ends.
		virtual void OnTestEnd(const TestInfo& test_info) {
			fprintf(stdout,
				"*** Test %s.%s ending.\n",
				test_info.test_case_name(),
				test_info.name());
			fflush(stdout);
		}
	};  // class TersePrinter

	TEST(CustomOutputTest, PrintsMessage) {
		printf("Printing something from the test body...\n");
	}

	TEST(CustomOutputTest, Succeeds) {
		SUCCEED() << "SUCCEED() has been invoked from here";
	}

	TEST(CustomOutputTest, Fails) {
		EXPECT_EQ(1, 2)
			<< "This test fails in order to demonstrate alternative failure messages";
	}

}  // namespace

int main(int argc, char **argv) {
	InitGoogleTest(&argc, argv);

	bool terse_output = false;
	if (argc > 1 && strcmp(argv[1], "--terse_output") == 0 )
		terse_output = true;
	else
		printf("%s\n", "Run this program with --terse_output to change the way "
		"it prints its output.");

	UnitTest& unit_test = *UnitTest::GetInstance();

	// If we are given the --terse_output command line flag, suppresses the
	// standard output and attaches own result printer.
	if (terse_output) {
		TestEventListeners& listeners = unit_test.listeners();

		// Removes the default console output listener from the list so it will
		// not receive events from Google Test and won't print any output. Since
		// this operation transfers ownership of the listener to the caller we
		// have to delete it as well.
		delete listeners.Release(listeners.default_result_printer());

		// Adds the custom output listener to the list. It will now receive
		// events from Google Test and print the alternative output. We don't
		// have to worry about deleting it since Google Test assumes ownership
		// over it after adding it to the list.
		listeners.Append(new TersePrinter);
	}
	int ret_val = RUN_ALL_TESTS();

	// This is an example of using the UnitTest reflection API to inspect test
	// results. Here we discount failures from the tests we expected to fail.
	int unexpectedly_failed_tests = 0;
	for (int i = 0; i < unit_test.total_test_case_count(); ++i) {
		const TestCase& test_case = *unit_test.GetTestCase(i);
		for (int j = 0; j < test_case.total_test_count(); ++j) {
			const TestInfo& test_info = *test_case.GetTestInfo(j);
			// Counts failed tests that were not meant to fail (those without
			// 'Fails' in the name).
			if (test_info.result()->Failed() &&
				strcmp(test_info.name(), "Fails") != 0) {
					unexpectedly_failed_tests++;
			}
		}
	}

	// Test that were meant to fail should not affect the test program outcome.
	if (unexpectedly_failed_tests == 0)
		ret_val = 0;

	return ret_val;
}

#endif

#if defined BRANCH_3
// Sample 10: This sample shows how to use Google Test listener API to implement
// a primitive leak checker.
using ::testing::EmptyTestEventListener;
using ::testing::InitGoogleTest;
using ::testing::Test;
using ::testing::TestCase;
using ::testing::TestEventListeners;
using ::testing::TestInfo;
using ::testing::TestPartResult;
using ::testing::UnitTest;

namespace {

	// We will track memory used by this class.
	class Water {
	public:
		// Normal Water declarations go here.

		// operator new and operator delete help us control water allocation.
		void* operator new(size_t allocation_size) {
			allocated_++;
			return malloc(allocation_size);
		}

		void operator delete(void* block, size_t /* allocation_size */) {
			allocated_--;
			free(block);
		}

		static int allocated() { return allocated_; }

	private:
		static int allocated_;
	};

	int Water::allocated_ = 0;

	// This event listener monitors how many Water objects are created and
	// destroyed by each test, and reports a failure if a test leaks some Water
	// objects. It does this by comparing the number of live Water objects at
	// the beginning of a test and at the end of a test.
	class LeakChecker : public EmptyTestEventListener {
	private:
		// Called before a test starts.
		virtual void OnTestStart(const TestInfo& /* test_info */) {
			initially_allocated_ = Water::allocated();
		}

		// Called after a test ends.
		virtual void OnTestEnd(const TestInfo& /* test_info */) {
			int difference = Water::allocated() - initially_allocated_;

			// You can generate a failure in any event handler except
			// OnTestPartResult. Just use an appropriate Google Test assertion to do
			// it.
			EXPECT_LE(difference, 0) << "Leaked " << difference << " unit(s) of Water!";
		}

		int initially_allocated_;
	};

	TEST(ListenersTest, DoesNotLeak) {
		Water* water = new Water;
		delete water;
	}

	// This should fail when the --check_for_leaks command line flag is
	// specified.
	TEST(ListenersTest, LeaksWater) {
		Water* water = new Water;
		EXPECT_TRUE(water != NULL);
	}

}  // namespace

int main(int argc, char **argv) {
	InitGoogleTest(&argc, argv);

	bool check_for_leaks = false;
	if (argc > 1 && strcmp(argv[1], "--check_for_leaks") == 0 )
		check_for_leaks = true;
	else
		printf("%s\n", "Run this program with --check_for_leaks to enable "
		"custom leak checking in the tests.");

	// If we are given the --check_for_leaks command line flag, installs the
	// leak checker.
	if (check_for_leaks) {
		TestEventListeners& listeners = UnitTest::GetInstance()->listeners();

		// Adds the leak checker to the end of the test event listener list,
		// after the default text output printer and the default XML report
		// generator.
		//
		// The order is important - it ensures that failures generated in the
		// leak checker's OnTestEnd() method are processed by the text and XML
		// printers *before* their OnTestEnd() methods are called, such that
		// they are attributed to the right test. Remember that a listener
		// receives an OnXyzStart event *after* listeners preceding it in the
		// list received that event, and receives an OnXyzEnd event *before*
		// listeners preceding it.
		//
		// We don't need to worry about deleting the new listener later, as
		// Google Test will do it.
		listeners.Append(new LeakChecker);
	}
	return RUN_ALL_TESTS();
}

#endif


你可能感兴趣的:(gtest简介及简单使用)