gtest是一个跨平台(Liunx、Mac OS X、Windows、Cygwin、Windows CE and Symbian)的C++测试框架,有google公司发布。gtest测试框架是在不同平台上为编写C++测试而生成的。
从http://code.google.com/p/googletest/downloads/detail?name=gtest-1.7.0.zip&can=2&q=下载最新的gtest-1.7.0版本
在Windows下编译gtest步骤:(1)、将gtest-1.7.0.zip进行解压缩;(2)、用vs2010打开msvc目录下的gtest.sln工程,需要进行转换,生成gtest、gtest_main、gtest_prod_test、gtest_unittest四个工程;(3)、分别在Debug和Release下,选中Solution ‘gtest’,点击右键,执行Rebuild Solution,会在msvc/gtest/Debug下生成gtestd.lib、gtest_maind.lib库,在msvc/gtest/Release下生成gtest.lib、gtest_main.lib库。
Widows下举例:(1)、在Solution ‘gtest’中新建一个Testgtest工程;(2)、新加一个fun.h文件,此文件内容为:
#ifndef _FOO_H_ #define _FOO_H_ int add(int a, int b) { return a + b; } #endif//_FOO_H_
(3)、修改工程属性:A、General -> Character Set: Use Multi-Byte Character Set;B、C/C++ -> General -> Additional IncludeDirectories: ../../gtest-1.7.0/include;C、C/C++ -> Code Generation -> Runtime Library: Debug下, Multi-threaded Debug(/MTd) , Release下,Multi-threaded(MT);
(4)、stdafx.h文件内容为:#pragma once #include "targetver.h" #include <stdio.h> #include "gtest/gtest.h"
#include "stdafx.h" #ifdef _DEBUG #pragma comment(lib, "../../gtest-1.7.0/msvc/gtest/Debug/gtestd.lib") #pragma comment(lib, "../../gtest-1.7.0/msvc/gtest/Debug/gtest_maind.lib") #else #pragma comment(lib, "../../gtest-1.7.0/msvc/gtest/Release/gtest.lib") #pragma comment(lib, "../../gtest-1.7.0/msvc/gtest/Release/gtest_main.lib") #endif
#include "stdafx.h" #include "fun.h" TEST(fun, add) { EXPECT_EQ(1, add(2,-1)); EXPECT_EQ(5, add(2,3)); } int main(int argc, char* argv[]) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
在Ubuntu下编译gtest步骤:在gtest-1.7.0.zip目录下,依次执行:unzip gtest-1.7.0.zip ;
cd gtest-1.7.0 ; ./configure ; make ; cd lib ; mv .libs libs ;此时,会在gtest-1.7.0/lib/libs目录下生成libgtest.a和libgtest_main.a库(说明:gtest-1.7.0/lib下会生成libgtest.la和libgtest_main.la库,.la为libtool生成的共享库,其实是个配置文档。lib下的libs文件刚开始生成时是隐藏文件,需要用mv指令转成正常文件,libs除了libgtest.a和libgtest_main.a库还有其它一些文件,没有什么用,全部删除即可)。
Ubuntu下举例:(1)、在gtest-1.7.0同一目录下新建一个test文件;(2)、此test文件夹下存放fun.h和gtest_test.cpp文件,fun.h文件内容与Windows下的fun.h内容完全一致;
(3)、gtest_test.cpp文件内容为:#include "../gtest-1.7.0/include/gtest/gtest.h" #include "fun.h" TEST(fun, add) { EXPECT_EQ(1, add(2,-1)); EXPECT_EQ(5, add(2,3)); } int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }
(4)、将终端定位到/test目录下,输入 g++ -g gtest_test.cpp -o gtest_test -I../gtest-1.7.0/include -L../gtest-1.7.0/lib/libs -lgtest -lgtest_main -lpthread ;会在/test目录下生成gtest_test执行文件;
(5)、执行 ./gtest_test 输出信息与Windows下一致。 更通用的做法是:不必在每个平台下分别编译生成静态库,可以直接使用/fused-src/gtest下的gtest.h和gtest-all.cc两个文件,此两个文件包含了所有你需要用到的Google Test的东西。如果没有/fuse-src这个文件,可以使用/scripts/fuse_gtest_files.py这个文件生成,操作步骤是:(1)、配置好python;(2)、打开命令提示符,将其定位到/scripts文件夹下,输入命令:python fuse_gtest_files.py fused_gtest ;会在/scripts文件夹下生成一个fused_gtest/gtest文件,里面包含gtest.h和gtest-all.cc两个文件,此两个文件和/fuse-src中的同名文件内容是完全一致的。
下面是对gtest的一些总结:
1. TEST(test_case_name, test_name)
TEST_F(test_fixture,test_name)
TEST宏的作用是创建一个简单测试,它定义了一个测试函数,在这个函数里可以使用任何C++代码并使用提供的断言来进行检查。
多个测试场景需要相同数据配置的情况,用TEST_F。
2. gtest中,断言的宏可以分为两类,一类是ASSERT系列,一类是EXPECT系列。
{ASSERT|EXPECT}_EQ(expected,actual): Tests that expected == actual
{ASSERT|EXPECT}_NE(v1,v2): Tests that v1 != v2
{ASSERT|EXPECT}_LT(v1,v2): Tests that v1 < v2
{ASSERT|EXPECT}_LE(v1,v2): Tests that v1 <= v2
{ASSERT|EXPECT}_GT(v1,v2): Tests that v1 > v2
{ASSERT|EXPECT}_GE(v1,v2): Tests that v1 >= v2
EXPECT_*和ASSERT_*的区别:(1)、EXPECT_*失败时,案例继续往下执行;(2)、ASSERT_*失败时,直接在当前函数中返回,当前函数中ASSERT_*后面的语句将不会执行,退出当前函数,并非退出当前案例。
断言:布尔值检查、数值型数据检查、字符串检查、显示成功或失败、异常检查、Predicate Assertions、浮点型检查、Windows HRESULT assertions、类型检查。
3. ::testing::InitGoogleTest(&argc,argv):gtest的测试案例允许接收一系列的命令行参数,将命令行参数传递给gtest,进行一些初始化操作。gtest的命令行参数非常丰富。
4. RUN_ALL_TESTS():运行所有测试案例。
5. 可以通过操作符"<<"将一些自定义的信息输出,如在EXPECT_EQ(v1, v2)<< "thisis a error! "
6. gtest的事件一共有3种:(1)、全局的,所有案例执行前后;(2)、TestSuite级别的,在某一批案例中第一个案例前,最后一个案例执行后;(3)、TestCase级别的,每个TestCase前后。
全局事件:要实现全局事件,必须写一个类,继承testing::Environment类,实现里面的SetUp和TearDown方法。SetUp方法在所有案例执行前执行;TearDown方法在所有案例执行后执行。
TestSuite事件:需要写一个类,继承testing::Test,然后实现两个静态方法:(1)、SetUpTestCase方法在第一个TestCase之前执行;(2)、TearDownTestCase方法在最后一个TestCase之后执行。
TestCase事件:是挂在每个案例执行前后的,需要实现的是SetUp方法和TearDown方法。(1)、SetUp方法在每个TestCase之前执行;(2)、TearDown方法在每个TestCase之后执行。
每个基于gtest的测试过程,是可以分为多个TestSuite级别,而每个TestSuite级别又可以分为多个TestCase级别。这样分层的结构的好处,是可以针对不同的TestSuite级别或者TestCase级别设置不同的参数、事件机制等,并且可以与实际测试的各个模块层级相互对应,便于管理。
7. 参数化:必须添加一个类,继承testing::TestWithParam<T>,其中T就是你需要参数化的参数类型。
8. 编写死亡测试案例时,TEST的第一个参数,即test_case_name,请使用DeathTest后缀,原因是gtest会优先运行死亡测试案例,应该是为线程安全考虑。
9. testing::AddGlobalTestEnvironment(newFooEnvironment):在main函数中创建和注册全局环境对象。
10. 对于运行参数,gtest提供了三种设置的途径:(1)、系统环境变量;(2)、命令行参数;(3)、代码中指定FLAG。
命令行参数:(1)、--gtest_list_tests:使用这个参数时,将不会执行里面的测试案例,而是输出一个案例的列表;(2)、 --gtest_filter:对执行的测试案例进行过滤,支持通配符;(3)、--gtest_also_run_disabled_tests:执行案例时,同时也执行被置为无效的测试案例;(4)、--gtest_repeat=[COUNT]:设置案例重复运行次数;(5)、--gtest_color=(yes|no|auto):输出命令行时是否使用一些五颜六色的颜色,默认是auto;(6)、--gtest_print_time:输出命令时是否打印每个测试案例的执行时间,默认是不打印的;(7)、--gtest_output=xml[:DIRECTORY_PATH\|:FILE_PATH:将测试结果输出到一个xml中,如—gtest_output=xml:d:\foo.xml 指定输出到d:\foo.xml ,如果不是指定了特定的文件路径,gtest每次输出的报告不会覆盖,而会以数字后缀的方式创建;(8)、--gtest_break_on_failure:调试模式下,当案例失败时停止,方便调试;(9)、--gtest_throw_on_failure:当案例失败时以C++异常的方式抛出;(10)、--gtest_catch_exceptions:是否捕捉异常,gtest默认是不捕捉异常的,这个参数只在Windows下有效。在gtest-1.7.0/samples的文件夹中有10个gtest的例子,我将其添加到一个工程中,便于查看:
1. 新建一个gtestSamples的工程;
2. 此工程下的文件包括:(1)、gtest/gtest.h;(2)、gtest-all.cc;(3)、fun.h;(4)、fun.cpp;(5)、gtestSamlpes.cpp。
3. gtest.h和gtest-all.cc两个文件为gtest-1.7.0/fused-src中的原始文件;
4. fun.h文件内容为:
#ifndef _FUN_H_ #define _FUN_H_ #include <string.h> #include <algorithm> // Returns n! (the factorial of n). For negative n, n! is defined to be 1. int Factorial(int n); // Returns true if n is a prime number. bool IsPrime(int n); // A simple string class. class MyString { private: const char* c_string_; const MyString& operator=(const MyString& rhs); public: // Clones a 0-terminated C string, allocating memory using new. static const char* CloneCString(const char* a_c_string); //////////////////////////////////////////////////////////// // // C'tors // The default c'tor constructs a NULL string. MyString() : c_string_(NULL) {} // Constructs a MyString by cloning a 0-terminated C string. explicit MyString(const char* a_c_string) : c_string_(NULL) { Set(a_c_string); } // Copy c'tor MyString(const MyString& string) : c_string_(NULL) { Set(string.c_string_); } //////////////////////////////////////////////////////////// // // D'tor. MyString is intended to be a final class, so the d'tor // doesn't need to be virtual. ~MyString() { delete[] c_string_; } // Gets the 0-terminated C string this MyString object represents. const char* c_string() const { return c_string_; } size_t Length() const { return c_string_ == NULL ? 0 : strlen(c_string_); } // Sets the 0-terminated C string this MyString object represents. void Set(const char* c_string); }; // Queue is a simple queue implemented as a singled-linked list. // // The element type must support copy constructor. template <typename E> // E is the element type class Queue; // QueueNode is a node in a Queue, which consists of an element of // type E and a pointer to the next node. template <typename E> // E is the element type class QueueNode { friend class Queue<E>; public: // Gets the element in this node. const E& element() const { return element_; } // Gets the next node in the queue. QueueNode* next() { return next_; } const QueueNode* next() const { return next_; } private: // Creates a node with a given element value. The next pointer is // set to NULL. explicit QueueNode(const E& an_element) : element_(an_element), next_(NULL) {} // We disable the default assignment operator and copy c'tor. const QueueNode& operator = (const QueueNode&); QueueNode(const QueueNode&); E element_; QueueNode* next_; }; template <typename E> // E is the element type. class Queue { public: // Creates an empty queue. Queue() : head_(NULL), last_(NULL), size_(0) {} // D'tor. Clears the queue. ~Queue() { Clear(); } // Clears the queue. void Clear() { if (size_ > 0) { // 1. Deletes every node. QueueNode<E>* node = head_; QueueNode<E>* next = node->next(); for (; ;) { delete node; node = next; if (node == NULL) break; next = node->next(); } // 2. Resets the member variables. head_ = last_ = NULL; size_ = 0; } } // Gets the number of elements. size_t Size() const { return size_; } // Gets the first element of the queue, or NULL if the queue is empty. QueueNode<E>* Head() { return head_; } const QueueNode<E>* Head() const { return head_; } // Gets the last element of the queue, or NULL if the queue is empty. QueueNode<E>* Last() { return last_; } const QueueNode<E>* Last() const { return last_; } // Adds an element to the end of the queue. A copy of the element is // created using the copy constructor, and then stored in the queue. // Changes made to the element in the queue doesn't affect the source // object, and vice versa. void Enqueue(const E& element) { QueueNode<E>* new_node = new QueueNode<E>(element); if (size_ == 0) { head_ = last_ = new_node; size_ = 1; } else { last_->next_ = new_node; last_ = new_node; size_++; } } // Removes the head of the queue and returns it. Returns NULL if // the queue is empty. E* Dequeue() { if (size_ == 0) { return NULL; } const QueueNode<E>* const old_head = head_; head_ = head_->next_; size_--; if (size_ == 0) { last_ = NULL; } E* element = new E(old_head->element()); delete old_head; return element; } // Applies a function/functor on each element of the queue, and // returns the result in a new queue. The original queue is not // affected. template <typename F> Queue* Map(F function) const { Queue* new_queue = new Queue(); for (const QueueNode<E>* node = head_; node != NULL; node = node->next_) { new_queue->Enqueue(function(node->element())); } return new_queue; } private: QueueNode<E>* head_; // The first node of the queue. QueueNode<E>* last_; // The last node of the queue. size_t size_; // The number of elements in the queue. // We disallow copying a queue. Queue(const Queue&); const Queue& operator = (const Queue&); }; // A simple monotonic counter. class Counter { private: int counter_; public: // Creates a counter that starts at 0. Counter() : counter_(0) {} // Returns the current counter value, and increments it. int Increment(); // Prints the current counter value to STDOUT. void Print() const; }; // The prime table interface. class PrimeTable { public: virtual ~PrimeTable() {} // Returns true iff n is a prime number. virtual bool IsPrime(int n) const = 0; // Returns the smallest prime number greater than p; or returns -1 // if the next prime is beyond the capacity of the table. virtual int GetNextPrime(int p) const = 0; }; // Implementation #1 calculates the primes on-the-fly. class OnTheFlyPrimeTable : public PrimeTable { public: virtual bool IsPrime(int n) const { if (n <= 1) return false; for (int i = 2; i*i <= n; i++) { // n is divisible by an integer other than 1 and itself. if ((n % i) == 0) return false; } return true; } virtual int GetNextPrime(int p) const { for (int n = p + 1; n > 0; n++) { if (IsPrime(n)) return n; } return -1; } }; // Implementation #2 pre-calculates the primes and stores the result // in an array. class PreCalculatedPrimeTable : public PrimeTable { public: // 'max' specifies the maximum number the prime table holds. explicit PreCalculatedPrimeTable(int max) : is_prime_size_(max + 1), is_prime_(new bool[max + 1]) { CalculatePrimesUpTo(max); } virtual ~PreCalculatedPrimeTable() { delete[] is_prime_; } virtual bool IsPrime(int n) const { return 0 <= n && n < is_prime_size_ && is_prime_[n]; } virtual int GetNextPrime(int p) const { for (int n = p + 1; n < is_prime_size_; n++) { if (is_prime_[n]) return n; } return -1; } private: void CalculatePrimesUpTo(int max) { ::std::fill(is_prime_, is_prime_ + is_prime_size_, true); is_prime_[0] = is_prime_[1] = false; for (int i = 2; i <= max; i++) { if (!is_prime_[i]) continue; // Marks all multiples of i (except i itself) as non-prime. for (int j = 2*i; j <= max; j += i) { is_prime_[j] = false; } } } const int is_prime_size_; bool* const is_prime_; // Disables compiler warning "assignment operator could not be generated." void operator=(const PreCalculatedPrimeTable& rhs); }; #endif//_FUN_H_
#include "fun.h" #include <stdio.h> // Returns n! (the factorial of n). For negative n, n! is defined to be 1. int Factorial(int n) { int result = 1; for (int i = 1; i <= n; i++) { result *= i; } return result; } // Returns true if n is a prime number. bool IsPrime(int n) { // Trivial case 1: small numbers if (n <= 1) return false; // Trivial case 2: even numbers if (n % 2 == 0) return n == 2; // Now, we have that n is odd and n >= 3. // Try to divide n by every odd number i, starting from 3 for (int i = 3; ; i += 2) { // We only have to try i up to the squre root of n if (i > n/i) break; // Now, we have i <= n/i < n. // If n is divisible by i, n is not prime. if (n % i == 0) return false; } // n has no integer factor in the range (1, n), and thus is prime. return true; } // Clones a 0-terminated C string, allocating memory using new. const char* MyString::CloneCString(const char* a_c_string) { if (a_c_string == NULL) return NULL; const size_t len = strlen(a_c_string); char* const clone = new char[ len + 1 ]; memcpy(clone, a_c_string, len + 1); return clone; } // Sets the 0-terminated C string this MyString object // represents. void MyString::Set(const char* a_c_string) { // Makes sure this works when c_string == c_string_ const char* const temp = MyString::CloneCString(a_c_string); delete[] c_string_; c_string_ = temp; } // Returns the current counter value, and increments it. int Counter::Increment() { return counter_++; } // Prints the current counter value to STDOUT. void Counter::Print() const { printf("%d", counter_); }
#include "gtest/gtest.h" #include "fun.h" #define BRANCH_1 //BRANCH_1 //BRANCH_2 //BRANCH_3 #if defined BRANCH_1 /*-------------------------------------------TEST macro-----------------------*/ //Sample 1: This sample shows how to write a simple unit test for a function, // using Google C++ testing framework. // // Writing a unit test using Google C++ testing framework is easy as 1-2-3: // Step 1. Include necessary header files such that the stuff your // test logic needs is declared. // Step 2. Use the TEST macro to define your tests. // Step 3. Call RUN_ALL_TESTS() in main(). // TEST has two parameters: the test case name and the test name. // After using the macro, you should define your test logic between a // pair of braces. You can use a bunch of macros to indicate the // success or failure of a test. // The test case name and the test name should both be valid C++ // identifiers. And you should not use underscore (_) in the names. // Tests Factorial(). // Tests factorial of negative numbers. TEST(FactorialTest, Negative) { // This test is named "Negative", and belongs to the "FactorialTest" // test case. EXPECT_EQ(1, Factorial(-5)); EXPECT_EQ(1, Factorial(-1)); EXPECT_GT(Factorial(-10), 0); // EXPECT_EQ(expected, actual) is the same as // // EXPECT_TRUE((expected) == (actual)) // // except that it will print both the expected value and the actual // value when the assertion fails. This is very helpful for // debugging. Therefore in this case EXPECT_EQ is preferred. // // On the other hand, EXPECT_TRUE accepts any Boolean expression, // and is thus more general. } // Tests factorial of 0. TEST(FactorialTest, Zero) { EXPECT_EQ(1, Factorial(0)); } // Tests factorial of positive numbers. TEST(FactorialTest, Positive) { EXPECT_EQ(1, Factorial(1)); EXPECT_EQ(2, Factorial(2)); EXPECT_EQ(6, Factorial(3)); EXPECT_EQ(40320, Factorial(8)); } // Tests IsPrime() // Tests negative input. TEST(IsPrimeTest, Negative) { // This test belongs to the IsPrimeTest test case. EXPECT_FALSE(IsPrime(-1)); EXPECT_FALSE(IsPrime(-2)); EXPECT_FALSE(IsPrime(INT_MIN)); } // Tests some trivial cases. TEST(IsPrimeTest, Trivial) { EXPECT_FALSE(IsPrime(0)); EXPECT_FALSE(IsPrime(1)); EXPECT_TRUE(IsPrime(2)); EXPECT_TRUE(IsPrime(3)); } // Tests positive input. TEST(IsPrimeTest, Positive) { EXPECT_FALSE(IsPrime(4)); EXPECT_TRUE(IsPrime(5)); EXPECT_FALSE(IsPrime(6)); EXPECT_TRUE(IsPrime(23)); } //Sample 2: This sample shows how to write a more complex unit test for a class // that has multiple member functions. // // Usually, it's a good idea to have one test for each method in your // class. You don't have to do that exactly, but it helps to keep // your tests organized. You may also throw in additional tests as // needed. // Tests the default c'tor. TEST(MyString, DefaultConstructor) { const MyString s; // Asserts that s.c_string() returns NULL. // // If we write NULL instead of // // static_cast<const char *>(NULL) // // in this assertion, it will generate a warning on gcc 3.4. The // reason is that EXPECT_EQ needs to know the types of its // arguments in order to print them when it fails. Since NULL is // #defined as 0, the compiler will use the formatter function for // int to print it. However, gcc thinks that NULL should be used as // a pointer, not an int, and therefore complains. // // The root of the problem is C++'s lack of distinction between the // integer number 0 and the null pointer constant. Unfortunately, // we have to live with this fact. EXPECT_STREQ(NULL, s.c_string()); EXPECT_EQ(0u, s.Length()); } const char kHelloString[] = "Hello, world!"; // Tests the c'tor that accepts a C string. TEST(MyString, ConstructorFromCString) { const MyString s(kHelloString); EXPECT_EQ(0, strcmp(s.c_string(), kHelloString)); EXPECT_EQ(sizeof(kHelloString)/sizeof(kHelloString[0]) - 1, s.Length()); } // Tests the copy c'tor. TEST(MyString, CopyConstructor) { const MyString s1(kHelloString); const MyString s2 = s1; EXPECT_EQ(0, strcmp(s2.c_string(), kHelloString)); } // Tests the Set method. TEST(MyString, Set) { MyString s; s.Set(kHelloString); EXPECT_EQ(0, strcmp(s.c_string(), kHelloString)); // Set should work when the input pointer is the same as the one // already in the MyString object. s.Set(s.c_string()); EXPECT_EQ(0, strcmp(s.c_string(), kHelloString)); // Can we set the MyString to NULL? s.Set(NULL); EXPECT_STREQ(NULL, s.c_string()); } //Sample 4: another basic example of using Google Test // Tests the Increment() method. TEST(Counter, Increment) { Counter c; // EXPECT_EQ() evaluates its arguments exactly once, so they // can have side effects. EXPECT_EQ(0, c.Increment()); EXPECT_EQ(1, c.Increment()); EXPECT_EQ(2, c.Increment()); } /*------------------------------------TEST_F macro------------------------------------*/ //Sample 3: In this example, we use a more advanced feature of Google Test called // test fixture. // // A test fixture is a place to hold objects and functions shared by // all tests in a test case. Using a test fixture avoids duplicating // the test code necessary to initialize and cleanup those common // objects for each test. It is also useful for defining sub-routines // that your tests need to invoke a lot. // // The tests share the test fixture in the sense of code sharing, not // data sharing. Each test is given its own fresh copy of the // fixture. You cannot expect the data modified by one test to be // passed on to another test, which is a bad idea. // // The reason for this design is that tests should be independent and // repeatable. In particular, a test should not fail as the result of // another test's failure. If one test depends on info produced by // another test, then the two tests should really be one big test. // // The macros for indicating the success/failure of a test // (EXPECT_TRUE, FAIL, etc) need to know what the current test is // (when Google Test prints the test result, it tells you which test // each failure belongs to). Technically, these macros invoke a // member function of the Test class. Therefore, you cannot use them // in a global function. That's why you should put test sub-routines // in a test fixture. // To use a test fixture, derive a class from testing::Test. class QueueTest : public testing::Test { protected: // You should make the members protected s.t. they can be // accessed from sub-classes. // virtual void SetUp() will be called before each test is run. You // should define it if you need to initialize the varaibles. // Otherwise, this can be skipped. virtual void SetUp() { q1_.Enqueue(1); q2_.Enqueue(2); q2_.Enqueue(3); } // virtual void TearDown() will be called after each test is run. // You should define it if there is cleanup work to do. Otherwise, // you don't have to provide it. // // virtual void TearDown() { // } // A helper function that some test uses. static int Double(int n) { return 2*n; } // A helper function for testing Queue::Map(). void MapTester(const Queue<int> * q) { // Creates a new queue, where each element is twice as big as the // corresponding one in q. const Queue<int> * const new_q = q->Map(Double); // Verifies that the new queue has the same size as q. ASSERT_EQ(q->Size(), new_q->Size()); // Verifies the relationship between the elements of the two queues. for ( const QueueNode<int> * n1 = q->Head(), * n2 = new_q->Head(); n1 != NULL; n1 = n1->next(), n2 = n2->next() ) { EXPECT_EQ(2 * n1->element(), n2->element()); } delete new_q; } // Declares the variables your tests want to use. Queue<int> q0_; Queue<int> q1_; Queue<int> q2_; }; // When you have a test fixture, you define a test using TEST_F // instead of TEST. // Tests the default c'tor. TEST_F(QueueTest, DefaultConstructor) { // You can access data in the test fixture here. EXPECT_EQ(0u, q0_.Size()); } // Tests Dequeue(). TEST_F(QueueTest, Dequeue) { int * n = q0_.Dequeue(); EXPECT_TRUE(n == NULL); n = q1_.Dequeue(); ASSERT_TRUE(n != NULL); EXPECT_EQ(1, *n); EXPECT_EQ(0u, q1_.Size()); delete n; n = q2_.Dequeue(); ASSERT_TRUE(n != NULL); EXPECT_EQ(2, *n); EXPECT_EQ(1u, q2_.Size()); delete n; } // Tests the Queue::Map() function. TEST_F(QueueTest, Map) { MapTester(&q0_); MapTester(&q1_); MapTester(&q2_); } // Sample 5: This sample teaches how to reuse a test fixture in multiple test // cases by deriving sub-fixtures from it. // // When you define a test fixture, you specify the name of the test // case that will use this fixture. Therefore, a test fixture can // be used by only one test case. // // Sometimes, more than one test cases may want to use the same or // slightly different test fixtures. For example, you may want to // make sure that all tests for a GUI library don't leak important // system resources like fonts and brushes. In Google Test, you do // this by putting the shared logic in a super (as in "super class") // test fixture, and then have each test case use a fixture derived // from this super fixture. // In this sample, we want to ensure that every test finishes within // ~5 seconds. If a test takes longer to run, we consider it a // failure. // // We put the code for timing a test in a test fixture called // "QuickTest". QuickTest is intended to be the super fixture that // other fixtures derive from, therefore there is no test case with // the name "QuickTest". This is OK. // // Later, we will derive multiple test fixtures from QuickTest. class QuickTest : public testing::Test { protected: // Remember that SetUp() is run immediately before a test starts. // This is a good place to record the start time. virtual void SetUp() { start_time_ = time(NULL); } // TearDown() is invoked immediately after a test finishes. Here we // check if the test was too slow. virtual void TearDown() { // Gets the time when the test finishes const time_t end_time = time(NULL); // Asserts that the test took no more than ~5 seconds. Did you // know that you can use assertions in SetUp() and TearDown() as // well? EXPECT_TRUE(end_time - start_time_ <= 5) << "The test took too long."; } // The UTC time (in seconds) when the test starts time_t start_time_; }; // We derive a fixture named IntegerFunctionTest from the QuickTest // fixture. All tests using this fixture will be automatically // required to be quick. class IntegerFunctionTest : public QuickTest { // We don't need any more logic than already in the QuickTest fixture. // Therefore the body is empty. }; // Now we can write tests in the IntegerFunctionTest test case. // Tests Factorial() TEST_F(IntegerFunctionTest, Factorial) { // Tests factorial of negative numbers. EXPECT_EQ(1, Factorial(-5)); EXPECT_EQ(1, Factorial(-1)); EXPECT_GT(Factorial(-10), 0); // Tests factorial of 0. EXPECT_EQ(1, Factorial(0)); // Tests factorial of positive numbers. EXPECT_EQ(1, Factorial(1)); EXPECT_EQ(2, Factorial(2)); EXPECT_EQ(6, Factorial(3)); EXPECT_EQ(40320, Factorial(8)); } // Tests IsPrime() TEST_F(IntegerFunctionTest, IsPrime) { // Tests negative input. EXPECT_FALSE(IsPrime(-1)); EXPECT_FALSE(IsPrime(-2)); EXPECT_FALSE(IsPrime(INT_MIN)); // Tests some trivial cases. EXPECT_FALSE(IsPrime(0)); EXPECT_FALSE(IsPrime(1)); EXPECT_TRUE(IsPrime(2)); EXPECT_TRUE(IsPrime(3)); // Tests positive input. EXPECT_FALSE(IsPrime(4)); EXPECT_TRUE(IsPrime(5)); EXPECT_FALSE(IsPrime(6)); EXPECT_TRUE(IsPrime(23)); } // The next test case (named "QueueTest") also needs to be quick, so // we derive another fixture from QuickTest. // // The QueueTest test fixture has some logic and shared objects in // addition to what's in QuickTest already. We define the additional // stuff inside the body of the test fixture, as usual. class QueueTest1 : public QuickTest { protected: virtual void SetUp() { // First, we need to set up the super fixture (QuickTest). QuickTest::SetUp(); // Second, some additional setup for this fixture. q1_.Enqueue(1); q2_.Enqueue(2); q2_.Enqueue(3); } // By default, TearDown() inherits the behavior of // QuickTest::TearDown(). As we have no additional cleaning work // for QueueTest, we omit it here. // // virtual void TearDown() { // QuickTest::TearDown(); // } Queue<int> q0_; Queue<int> q1_; Queue<int> q2_; }; // Now, let's write tests using the QueueTest fixture. // Tests the default constructor. TEST_F(QueueTest1, DefaultConstructor) { EXPECT_EQ(0u, q0_.Size()); } // Tests Dequeue(). TEST_F(QueueTest1, Dequeue) { int* n = q0_.Dequeue(); EXPECT_TRUE(n == NULL); n = q1_.Dequeue(); EXPECT_TRUE(n != NULL); EXPECT_EQ(1, *n); EXPECT_EQ(0u, q1_.Size()); delete n; n = q2_.Dequeue(); EXPECT_TRUE(n != NULL); EXPECT_EQ(2, *n); EXPECT_EQ(1u, q2_.Size()); delete n; } /*-------------------TYPED_TEST macro and TYPED_TEST_P macro------------------*/ //Sample 6: This sample shows how to test common properties of multiple // implementations of the same interface (aka interface tests). // First, we define some factory functions for creating instances of // the implementations. You may be able to skip this step if all your // implementations can be constructed the same way. template <class T> PrimeTable* CreatePrimeTable(); template <> PrimeTable* CreatePrimeTable<OnTheFlyPrimeTable>() { return new OnTheFlyPrimeTable; } template <> PrimeTable* CreatePrimeTable<PreCalculatedPrimeTable>() { return new PreCalculatedPrimeTable(10000); } // Then we define a test fixture class template. template <class T> class PrimeTableTest : public testing::Test { protected: // The ctor calls the factory function to create a prime table // implemented by T. PrimeTableTest() : table_(CreatePrimeTable<T>()) {} virtual ~PrimeTableTest() { delete table_; } // Note that we test an implementation via the base interface // instead of the actual implementation class. This is important // for keeping the tests close to the real world scenario, where the // implementation is invoked via the base interface. It avoids // got-yas where the implementation class has a method that shadows // a method with the same name (but slightly different argument // types) in the base interface, for example. PrimeTable* const table_; }; #if GTEST_HAS_TYPED_TEST using testing::Types; // Google Test offers two ways for reusing tests for different types. // The first is called "typed tests". You should use it if you // already know *all* the types you are gonna exercise when you write // the tests. // To write a typed test case, first use // // TYPED_TEST_CASE(TestCaseName, TypeList); // // to declare it and specify the type parameters. As with TEST_F, // TestCaseName must match the test fixture name. // The list of types we want to test. typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable> Implementations; TYPED_TEST_CASE(PrimeTableTest, Implementations); // Then use TYPED_TEST(TestCaseName, TestName) to define a typed test, // similar to TEST_F. TYPED_TEST(PrimeTableTest, ReturnsFalseForNonPrimes) { // Inside the test body, you can refer to the type parameter by // TypeParam, and refer to the fixture class by TestFixture. We // don't need them in this example. // Since we are in the template world, C++ requires explicitly // writing 'this->' when referring to members of the fixture class. // This is something you have to learn to live with. EXPECT_FALSE(this->table_->IsPrime(-5)); EXPECT_FALSE(this->table_->IsPrime(0)); EXPECT_FALSE(this->table_->IsPrime(1)); EXPECT_FALSE(this->table_->IsPrime(4)); EXPECT_FALSE(this->table_->IsPrime(6)); EXPECT_FALSE(this->table_->IsPrime(100)); } TYPED_TEST(PrimeTableTest, ReturnsTrueForPrimes) { EXPECT_TRUE(this->table_->IsPrime(2)); EXPECT_TRUE(this->table_->IsPrime(3)); EXPECT_TRUE(this->table_->IsPrime(5)); EXPECT_TRUE(this->table_->IsPrime(7)); EXPECT_TRUE(this->table_->IsPrime(11)); EXPECT_TRUE(this->table_->IsPrime(131)); } TYPED_TEST(PrimeTableTest, CanGetNextPrime) { EXPECT_EQ(2, this->table_->GetNextPrime(0)); EXPECT_EQ(3, this->table_->GetNextPrime(2)); EXPECT_EQ(5, this->table_->GetNextPrime(3)); EXPECT_EQ(7, this->table_->GetNextPrime(5)); EXPECT_EQ(11, this->table_->GetNextPrime(7)); EXPECT_EQ(131, this->table_->GetNextPrime(128)); } // That's it! Google Test will repeat each TYPED_TEST for each type // in the type list specified in TYPED_TEST_CASE. Sit back and be // happy that you don't have to define them multiple times. #endif // GTEST_HAS_TYPED_TEST #if GTEST_HAS_TYPED_TEST_P using testing::Types; // Sometimes, however, you don't yet know all the types that you want // to test when you write the tests. For example, if you are the // author of an interface and expect other people to implement it, you // might want to write a set of tests to make sure each implementation // conforms to some basic requirements, but you don't know what // implementations will be written in the future. // // How can you write the tests without committing to the type // parameters? That's what "type-parameterized tests" can do for you. // It is a bit more involved than typed tests, but in return you get a // test pattern that can be reused in many contexts, which is a big // win. Here's how you do it: // First, define a test fixture class template. Here we just reuse // the PrimeTableTest fixture defined earlier: template <class T> class PrimeTableTest2 : public PrimeTableTest<T> { }; // Then, declare the test case. The argument is the name of the test // fixture, and also the name of the test case (as usual). The _P // suffix is for "parameterized" or "pattern". TYPED_TEST_CASE_P(PrimeTableTest2); // Next, use TYPED_TEST_P(TestCaseName, TestName) to define a test, // similar to what you do with TEST_F. TYPED_TEST_P(PrimeTableTest2, ReturnsFalseForNonPrimes) { EXPECT_FALSE(this->table_->IsPrime(-5)); EXPECT_FALSE(this->table_->IsPrime(0)); EXPECT_FALSE(this->table_->IsPrime(1)); EXPECT_FALSE(this->table_->IsPrime(4)); EXPECT_FALSE(this->table_->IsPrime(6)); EXPECT_FALSE(this->table_->IsPrime(100)); } TYPED_TEST_P(PrimeTableTest2, ReturnsTrueForPrimes) { EXPECT_TRUE(this->table_->IsPrime(2)); EXPECT_TRUE(this->table_->IsPrime(3)); EXPECT_TRUE(this->table_->IsPrime(5)); EXPECT_TRUE(this->table_->IsPrime(7)); EXPECT_TRUE(this->table_->IsPrime(11)); EXPECT_TRUE(this->table_->IsPrime(131)); } TYPED_TEST_P(PrimeTableTest2, CanGetNextPrime) { EXPECT_EQ(2, this->table_->GetNextPrime(0)); EXPECT_EQ(3, this->table_->GetNextPrime(2)); EXPECT_EQ(5, this->table_->GetNextPrime(3)); EXPECT_EQ(7, this->table_->GetNextPrime(5)); EXPECT_EQ(11, this->table_->GetNextPrime(7)); EXPECT_EQ(131, this->table_->GetNextPrime(128)); } // Type-parameterized tests involve one extra step: you have to // enumerate the tests you defined: REGISTER_TYPED_TEST_CASE_P( PrimeTableTest2, // The first argument is the test case name. // The rest of the arguments are the test names. ReturnsFalseForNonPrimes, ReturnsTrueForPrimes, CanGetNextPrime); // At this point the test pattern is done. However, you don't have // any real test yet as you haven't said which types you want to run // the tests with. // To turn the abstract test pattern into real tests, you instantiate // it with a list of types. Usually the test pattern will be defined // in a .h file, and anyone can #include and instantiate it. You can // even instantiate it more than once in the same program. To tell // different instances apart, you give each of them a name, which will // become part of the test case name and can be used in test filters. // The list of types we want to test. Note that it doesn't have to be // defined at the time we write the TYPED_TEST_P()s. typedef Types<OnTheFlyPrimeTable, PreCalculatedPrimeTable> PrimeTableImplementations; INSTANTIATE_TYPED_TEST_CASE_P(OnTheFlyAndPreCalculated, // Instance name PrimeTableTest2, // Test case name PrimeTableImplementations); // Type list #endif // GTEST_HAS_TYPED_TEST_P /*-----------------------------TEST_P macro--------------------------------*/ //Sample 7: This sample shows how to test common properties of multiple // implementations of an interface (aka interface tests) using // value-parameterized tests. Each test in the test case has // a parameter that is an interface pointer to an implementation // tested. #if GTEST_HAS_PARAM_TEST using ::testing::TestWithParam; using ::testing::Values; // As a general rule, to prevent a test from affecting the tests that come // after it, you should create and destroy the tested objects for each test // instead of reusing them. In this sample we will define a simple factory // function for PrimeTable objects. We will instantiate objects in test's // SetUp() method and delete them in TearDown() method. typedef PrimeTable* CreatePrimeTableFunc(); PrimeTable* CreateOnTheFlyPrimeTable() { return new OnTheFlyPrimeTable(); } template <size_t max_precalculated> PrimeTable* CreatePreCalculatedPrimeTable() { return new PreCalculatedPrimeTable(max_precalculated); } // Inside the test body, fixture constructor, SetUp(), and TearDown() you // can refer to the test parameter by GetParam(). In this case, the test // parameter is a factory function which we call in fixture's SetUp() to // create and store an instance of PrimeTable. class PrimeTableTest1 : public TestWithParam<CreatePrimeTableFunc*> { public: virtual ~PrimeTableTest1() { delete table_; } virtual void SetUp() { table_ = (*GetParam())(); } virtual void TearDown() { delete table_; table_ = NULL; } protected: PrimeTable* table_; }; TEST_P(PrimeTableTest1, ReturnsFalseForNonPrimes) { EXPECT_FALSE(table_->IsPrime(-5)); EXPECT_FALSE(table_->IsPrime(0)); EXPECT_FALSE(table_->IsPrime(1)); EXPECT_FALSE(table_->IsPrime(4)); EXPECT_FALSE(table_->IsPrime(6)); EXPECT_FALSE(table_->IsPrime(100)); } TEST_P(PrimeTableTest1, ReturnsTrueForPrimes) { EXPECT_TRUE(table_->IsPrime(2)); EXPECT_TRUE(table_->IsPrime(3)); EXPECT_TRUE(table_->IsPrime(5)); EXPECT_TRUE(table_->IsPrime(7)); EXPECT_TRUE(table_->IsPrime(11)); EXPECT_TRUE(table_->IsPrime(131)); } TEST_P(PrimeTableTest1, CanGetNextPrime) { EXPECT_EQ(2, table_->GetNextPrime(0)); EXPECT_EQ(3, table_->GetNextPrime(2)); EXPECT_EQ(5, table_->GetNextPrime(3)); EXPECT_EQ(7, table_->GetNextPrime(5)); EXPECT_EQ(11, table_->GetNextPrime(7)); EXPECT_EQ(131, table_->GetNextPrime(128)); } // In order to run value-parameterized tests, you need to instantiate them, // or bind them to a list of values which will be used as test parameters. // You can instantiate them in a different translation module, or even // instantiate them several times. // // Here, we instantiate our tests with a list of two PrimeTable object // factory functions: INSTANTIATE_TEST_CASE_P( OnTheFlyAndPreCalculated, PrimeTableTest1, Values(&CreateOnTheFlyPrimeTable, &CreatePreCalculatedPrimeTable<1000>)); #else // Google Test may not support value-parameterized tests with some // compilers. If we use conditional compilation to compile out all // code referring to the gtest_main library, MSVC linker will not link // that library at all and consequently complain about missing entry // point defined in that library (fatal error LNK1561: entry point // must be defined). This dummy test keeps gtest_main linked in. TEST(DummyTest, ValueParameterizedTestsAreNotSupportedOnThisPlatform) {} #endif // GTEST_HAS_PARAM_TEST // Sample 8: This sample shows how to test code relying on some global flag variables. // Combine() helps with generating all possible combinations of such flags, // and each test is given one combination as a parameter. #if GTEST_HAS_COMBINE // Suppose we want to introduce a new, improved implementation of PrimeTable // which combines speed of PrecalcPrimeTable and versatility of // OnTheFlyPrimeTable (see prime_tables.h). Inside it instantiates both // PrecalcPrimeTable and OnTheFlyPrimeTable and uses the one that is more // appropriate under the circumstances. But in low memory conditions, it can be // told to instantiate without PrecalcPrimeTable instance at all and use only // OnTheFlyPrimeTable. class HybridPrimeTable : public PrimeTable { public: HybridPrimeTable(bool force_on_the_fly, int max_precalculated) : on_the_fly_impl_(new OnTheFlyPrimeTable), precalc_impl_(force_on_the_fly ? NULL : new PreCalculatedPrimeTable(max_precalculated)), max_precalculated_(max_precalculated) {} virtual ~HybridPrimeTable() { delete on_the_fly_impl_; delete precalc_impl_; } virtual bool IsPrime(int n) const { if (precalc_impl_ != NULL && n < max_precalculated_) return precalc_impl_->IsPrime(n); else return on_the_fly_impl_->IsPrime(n); } virtual int GetNextPrime(int p) const { int next_prime = -1; if (precalc_impl_ != NULL && p < max_precalculated_) next_prime = precalc_impl_->GetNextPrime(p); return next_prime != -1 ? next_prime : on_the_fly_impl_->GetNextPrime(p); } private: OnTheFlyPrimeTable* on_the_fly_impl_; PreCalculatedPrimeTable* precalc_impl_; int max_precalculated_; }; using ::testing::TestWithParam; using ::testing::Bool; using ::testing::Values; using ::testing::Combine; // To test all code paths for HybridPrimeTable we must test it with numbers // both within and outside PreCalculatedPrimeTable's capacity and also with // PreCalculatedPrimeTable disabled. We do this by defining fixture which will // accept different combinations of parameters for instantiating a // HybridPrimeTable instance. class PrimeTableTest3 : public TestWithParam< ::std::tr1::tuple<bool, int> > { protected: virtual void SetUp() { // This can be written as // // bool force_on_the_fly; // int max_precalculated; // tie(force_on_the_fly, max_precalculated) = GetParam(); // // once the Google C++ Style Guide allows use of ::std::tr1::tie. // bool force_on_the_fly = ::std::tr1::get<0>(GetParam()); int max_precalculated = ::std::tr1::get<1>(GetParam()); table_ = new HybridPrimeTable(force_on_the_fly, max_precalculated); } virtual void TearDown() { delete table_; table_ = NULL; } HybridPrimeTable* table_; }; TEST_P(PrimeTableTest3, ReturnsFalseForNonPrimes) { // Inside the test body, you can refer to the test parameter by GetParam(). // In this case, the test parameter is a PrimeTable interface pointer which // we can use directly. // Please note that you can also save it in the fixture's SetUp() method // or constructor and use saved copy in the tests. EXPECT_FALSE(table_->IsPrime(-5)); EXPECT_FALSE(table_->IsPrime(0)); EXPECT_FALSE(table_->IsPrime(1)); EXPECT_FALSE(table_->IsPrime(4)); EXPECT_FALSE(table_->IsPrime(6)); EXPECT_FALSE(table_->IsPrime(100)); } TEST_P(PrimeTableTest3, ReturnsTrueForPrimes) { EXPECT_TRUE(table_->IsPrime(2)); EXPECT_TRUE(table_->IsPrime(3)); EXPECT_TRUE(table_->IsPrime(5)); EXPECT_TRUE(table_->IsPrime(7)); EXPECT_TRUE(table_->IsPrime(11)); EXPECT_TRUE(table_->IsPrime(131)); } TEST_P(PrimeTableTest3, CanGetNextPrime) { EXPECT_EQ(2, table_->GetNextPrime(0)); EXPECT_EQ(3, table_->GetNextPrime(2)); EXPECT_EQ(5, table_->GetNextPrime(3)); EXPECT_EQ(7, table_->GetNextPrime(5)); EXPECT_EQ(11, table_->GetNextPrime(7)); EXPECT_EQ(131, table_->GetNextPrime(128)); } // In order to run value-parameterized tests, you need to instantiate them, // or bind them to a list of values which will be used as test parameters. // You can instantiate them in a different translation module, or even // instantiate them several times. // // Here, we instantiate our tests with a list of parameters. We must combine // all variations of the boolean flag suppressing PrecalcPrimeTable and some // meaningful values for tests. We choose a small value (1), and a value that // will put some of the tested numbers beyond the capability of the // PrecalcPrimeTable instance and some inside it (10). Combine will produce all // possible combinations. INSTANTIATE_TEST_CASE_P(MeaningfulTestParameters, PrimeTableTest3, Combine(Bool(), Values(1, 10))); #else // Google Test may not support Combine() with some compilers. If we // use conditional compilation to compile out all code referring to // the gtest_main library, MSVC linker will not link that library at // all and consequently complain about missing entry point defined in // that library (fatal error LNK1561: entry point must be // defined). This dummy test keeps gtest_main linked in. TEST(DummyTest, CombineIsNotSupportedOnThisPlatform) {} #endif // GTEST_HAS_COMBINE int main (int argc, char* argv[]) { testing::InitGoogleTest(&argc, argv); //::testing::GTEST_FLAG(filter) = "IsPrimeTest.*:FactorialTest.*"; return RUN_ALL_TESTS(); return 0; } #endif #if defined BRANCH_2 // Sample 9: This sample shows how to use Google Test listener API to implement // an alternative console output and how to use the UnitTest reflection API // to enumerate test cases and tests and to inspect their results. using ::testing::EmptyTestEventListener; using ::testing::InitGoogleTest; using ::testing::Test; using ::testing::TestCase; using ::testing::TestEventListeners; using ::testing::TestInfo; using ::testing::TestPartResult; using ::testing::UnitTest; namespace { // Provides alternative output mode which produces minimal amount of // information about tests. class TersePrinter : public EmptyTestEventListener { private: // Called before any test activity starts. virtual void OnTestProgramStart(const UnitTest& /* unit_test */) {} // Called after all test activities have ended. virtual void OnTestProgramEnd(const UnitTest& unit_test) { fprintf(stdout, "TEST %s\n", unit_test.Passed() ? "PASSED" : "FAILED"); fflush(stdout); } // Called before a test starts. virtual void OnTestStart(const TestInfo& test_info) { fprintf(stdout, "*** Test %s.%s starting.\n", test_info.test_case_name(), test_info.name()); fflush(stdout); } // Called after a failed assertion or a SUCCEED() invocation. virtual void OnTestPartResult(const TestPartResult& test_part_result) { fprintf(stdout, "%s in %s:%d\n%s\n", test_part_result.failed() ? "*** Failure" : "Success", test_part_result.file_name(), test_part_result.line_number(), test_part_result.summary()); fflush(stdout); } // Called after a test ends. virtual void OnTestEnd(const TestInfo& test_info) { fprintf(stdout, "*** Test %s.%s ending.\n", test_info.test_case_name(), test_info.name()); fflush(stdout); } }; // class TersePrinter TEST(CustomOutputTest, PrintsMessage) { printf("Printing something from the test body...\n"); } TEST(CustomOutputTest, Succeeds) { SUCCEED() << "SUCCEED() has been invoked from here"; } TEST(CustomOutputTest, Fails) { EXPECT_EQ(1, 2) << "This test fails in order to demonstrate alternative failure messages"; } } // namespace int main(int argc, char **argv) { InitGoogleTest(&argc, argv); bool terse_output = false; if (argc > 1 && strcmp(argv[1], "--terse_output") == 0 ) terse_output = true; else printf("%s\n", "Run this program with --terse_output to change the way " "it prints its output."); UnitTest& unit_test = *UnitTest::GetInstance(); // If we are given the --terse_output command line flag, suppresses the // standard output and attaches own result printer. if (terse_output) { TestEventListeners& listeners = unit_test.listeners(); // Removes the default console output listener from the list so it will // not receive events from Google Test and won't print any output. Since // this operation transfers ownership of the listener to the caller we // have to delete it as well. delete listeners.Release(listeners.default_result_printer()); // Adds the custom output listener to the list. It will now receive // events from Google Test and print the alternative output. We don't // have to worry about deleting it since Google Test assumes ownership // over it after adding it to the list. listeners.Append(new TersePrinter); } int ret_val = RUN_ALL_TESTS(); // This is an example of using the UnitTest reflection API to inspect test // results. Here we discount failures from the tests we expected to fail. int unexpectedly_failed_tests = 0; for (int i = 0; i < unit_test.total_test_case_count(); ++i) { const TestCase& test_case = *unit_test.GetTestCase(i); for (int j = 0; j < test_case.total_test_count(); ++j) { const TestInfo& test_info = *test_case.GetTestInfo(j); // Counts failed tests that were not meant to fail (those without // 'Fails' in the name). if (test_info.result()->Failed() && strcmp(test_info.name(), "Fails") != 0) { unexpectedly_failed_tests++; } } } // Test that were meant to fail should not affect the test program outcome. if (unexpectedly_failed_tests == 0) ret_val = 0; return ret_val; } #endif #if defined BRANCH_3 // Sample 10: This sample shows how to use Google Test listener API to implement // a primitive leak checker. using ::testing::EmptyTestEventListener; using ::testing::InitGoogleTest; using ::testing::Test; using ::testing::TestCase; using ::testing::TestEventListeners; using ::testing::TestInfo; using ::testing::TestPartResult; using ::testing::UnitTest; namespace { // We will track memory used by this class. class Water { public: // Normal Water declarations go here. // operator new and operator delete help us control water allocation. void* operator new(size_t allocation_size) { allocated_++; return malloc(allocation_size); } void operator delete(void* block, size_t /* allocation_size */) { allocated_--; free(block); } static int allocated() { return allocated_; } private: static int allocated_; }; int Water::allocated_ = 0; // This event listener monitors how many Water objects are created and // destroyed by each test, and reports a failure if a test leaks some Water // objects. It does this by comparing the number of live Water objects at // the beginning of a test and at the end of a test. class LeakChecker : public EmptyTestEventListener { private: // Called before a test starts. virtual void OnTestStart(const TestInfo& /* test_info */) { initially_allocated_ = Water::allocated(); } // Called after a test ends. virtual void OnTestEnd(const TestInfo& /* test_info */) { int difference = Water::allocated() - initially_allocated_; // You can generate a failure in any event handler except // OnTestPartResult. Just use an appropriate Google Test assertion to do // it. EXPECT_LE(difference, 0) << "Leaked " << difference << " unit(s) of Water!"; } int initially_allocated_; }; TEST(ListenersTest, DoesNotLeak) { Water* water = new Water; delete water; } // This should fail when the --check_for_leaks command line flag is // specified. TEST(ListenersTest, LeaksWater) { Water* water = new Water; EXPECT_TRUE(water != NULL); } } // namespace int main(int argc, char **argv) { InitGoogleTest(&argc, argv); bool check_for_leaks = false; if (argc > 1 && strcmp(argv[1], "--check_for_leaks") == 0 ) check_for_leaks = true; else printf("%s\n", "Run this program with --check_for_leaks to enable " "custom leak checking in the tests."); // If we are given the --check_for_leaks command line flag, installs the // leak checker. if (check_for_leaks) { TestEventListeners& listeners = UnitTest::GetInstance()->listeners(); // Adds the leak checker to the end of the test event listener list, // after the default text output printer and the default XML report // generator. // // The order is important - it ensures that failures generated in the // leak checker's OnTestEnd() method are processed by the text and XML // printers *before* their OnTestEnd() methods are called, such that // they are attributed to the right test. Remember that a listener // receives an OnXyzStart event *after* listeners preceding it in the // list received that event, and receives an OnXyzEnd event *before* // listeners preceding it. // // We don't need to worry about deleting the new listener later, as // Google Test will do it. listeners.Append(new LeakChecker); } return RUN_ALL_TESTS(); } #endif