linux下定时器的使用--timer_create等系列

直接上程序

程序1:采用新线程派驻的通知方式


#include <stdio.h>
#include <signal.h>
#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <unistd.h>

#define CLOCKID CLOCK_REALTIME

void timer_thread(union sigval v)
{
	printf("timer_thread function! %d\n", v.sival_int);
}

int main()
{
	// XXX int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid);
	// clockid--值:CLOCK_REALTIME,CLOCK_MONOTONIC,CLOCK_PROCESS_CPUTIME_ID,CLOCK_THREAD_CPUTIME_ID
	// evp--存放环境值的地址,结构成员说明了定时器到期的通知方式和处理方式等
	// timerid--定时器标识符
	timer_t timerid;
	struct sigevent evp;
	memset(&evp, 0, sizeof(struct sigevent));		//清零初始化

	evp.sigev_value.sival_int = 111;			//也是标识定时器的,这和timerid有什么区别?回调函数可以获得
	evp.sigev_notify = SIGEV_THREAD;			//线程通知的方式,派驻新线程
	evp.sigev_notify_function = timer_thread;		//线程函数地址

	if (timer_create(CLOCKID, &evp, &timerid) == -1)
	{
		perror("fail to timer_create");
		exit(-1);
	}

	// XXX int timer_settime(timer_t timerid, int flags, const struct itimerspec *new_value,struct itimerspec *old_value);
	// timerid--定时器标识
	// flags--0表示相对时间,1表示绝对时间
	// new_value--定时器的新初始值和间隔,如下面的it
	// old_value--取值通常为0,即第四个参数常为NULL,若不为NULL,则返回定时器的前一个值
	
	//第一次间隔it.it_value这么长,以后每次都是it.it_interval这么长,就是说it.it_value变0的时候会装载it.it_interval的值
	struct itimerspec it;
	it.it_interval.tv_sec = 1;
	it.it_interval.tv_nsec = 0;
	it.it_value.tv_sec = 1;
	it.it_value.tv_nsec = 0;

	if (timer_settime(timerid, 0, &it, NULL) == -1)
	{
		perror("fail to timer_settime");
		exit(-1);
	}

	pause();

	return 0;
}
/*
 * int timer_gettime(timer_t timerid, struct itimerspec *curr_value);
 * 获取timerid指定的定时器的值,填入curr_value
 *
 */


程序2:通知方式为信号的处理方式


#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <signal.h>
#include <string.h>
#include <unistd.h>

#define CLOCKID CLOCK_REALTIME

void sig_handler(int signo)
{
	printf("timer_signal function! %d\n", signo);
}

int main()
{
	// XXX int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);
	// signum--指定的信号编号,可以指定SIGKILL和SIGSTOP以外的所有信号编号
	// act结构体--设置信号编号为signum的处理方式
	// oldact结构体--保存上次的处理方式
	//
	// struct sigaction 
	// {
	// void (*sa_handler)(int);			//信号响应函数地址
	// void (*sa_sigaction)(int, siginfo_t *, void *);   //但sa_flags为SA——SIGINFO时才使用
	// sigset_t sa_mask;         //说明一个信号集在调用捕捉函数之前,会加入进程的屏蔽中,当捕捉函数返回时,还原
	// int sa_flags;
	// void (*sa_restorer)(void);	//未用
	// };
	//
	timer_t timerid;
	struct sigevent evp;

	struct sigaction act;
	memset(&act, 0, sizeof(act));
	act.sa_handler = sig_handler;
	act.sa_flags = 0;

	// XXX int sigaddset(sigset_t *set, int signum);  //将signum指定的信号加入set信号集
	// XXX int sigemptyset(sigset_t *set);			//初始化信号集
	
	sigemptyset(&act.sa_mask);

	if (sigaction(SIGUSR1, &act, NULL) == -1)
	{
		perror("fail to sigaction");
		exit(-1);
	}

	memset(&evp, 0, sizeof(struct sigevent));
	evp.sigev_signo = SIGUSR1;
	evp.sigev_notify = SIGEV_SIGNAL;
	if (timer_create(CLOCK_REALTIME, &evp, &timerid) == -1)
	{
		perror("fail to timer_create");
		exit(-1);
	}

	struct itimerspec it;
	it.it_interval.tv_sec = 2;
	it.it_interval.tv_nsec = 0;
	it.it_value.tv_sec = 1;
	it.it_value.tv_nsec = 0;
	if (timer_settime(timerid, 0, &it, 0) == -1)
	{
		perror("fail to timer_settime");
		exit(-1);
	}

	pause();

	return 0;
}



你可能感兴趣的:(linux下定时器的使用--timer_create等系列)