数据库的查询优化建议整理

从大多数数据库应用系统的实例来看,查询*作在各种数据库*作中所占据的比重最大,而查询*作所基于的SELECT语句在SQL语句中又是代价最大的语句。

查询语句(SELECT)的优化建议

  (1)、合理使用索引:where子句中变量顺序应与索引字键顺序相同。

  如:create index test_idx on test(hm, rq, xx)

      索引字键顺序:首先是号码hm,其次是日期rq,最后是标志xx,所以where子句变量顺序应是where hm<=“P1234”and rq=“06/06/1999”and xx=“DDD”,不应是where xx=“DDD”and rq=“06/06/1999”and hm <=“P1234”这样的不按索引字键顺序写法。

  (2)、将最具有限制性的条件放在前面,大值在前,小值在后。

     如:where colA<=10000 AND colA>=1 效率高

     where colA>=1 AND colA<=10000 效率低

  (3)、避免采用MATCHES和LIKE通配符匹配查询

  通配符匹配查询特别耗费时间。即使在条件字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。

  例如语句:SELECT *FROM customer WHERE zipcode MATCHES “524*”

  可以考虑将它改为SELECT *FROM customer WHERE ZipCode<=“524999”AND ZipCode >=“524000”,则在执行查询时就会利用索引来查询,显然会大大提高速度。

  (4)、避免非开始的子串

  例如语句:SELECT *FROM customer WHERE zipcode[2,3] >“24”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。

  (5)、避免相关子查询

  一个字段的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的字段值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。

  例如:将下面的语句

  select hm,rq from TabA

  where item IN (select item form TabB where TabB.num=50)

  改为:select hm,bf from TabA, TabB

  where TabA.item=TabB.item AND TabB.num=50

  (6)、避免或简化排序

   应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:

  ◆ 索引中不包括一个或几个待排序的字段;

  ◆group by或order by子句中字段的次序与索引的次序不一样;

  ◆ 排序的字段来自不同的表。

   为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的字段的范围等。

  (7)、消除对大型表行数据的顺序存取

   在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的字段进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。

   还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序*作:

  SELECT *FROM orders WHERE (cust_num=126 AND order_num>1001) OR order_num=1008

   虽然在cust_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:

  SELECT *FROM orders WHERE cust_num=126 AND order_num>1001

  UNION

  SELECT *FROM orders WHERE order_num=1008

   这样就能利用索引路径处理查询。

  (8)、对于大数据量的求和应避免使用单一的sum命令处理,可采用group by方式与其结合,有时其效率可提高几倍甚至百倍。

  (9)、避免会引起磁盘读写的rowid*作。在where子句中或select语句中,用rowid要产生磁盘读写,是一个物理过程,会影响性能。

  (10)、使用临时表加速查询

   把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序*作,而且在其他方面还能简化优化器的工作。

   但要注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据

  此外还有一些DD要分享一下1. 应尽量避免在where 子句中对字段进行null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,
      如:
      select id from t where num is null
     NULL对于大多数数据库都需要特殊处理,MySQL也不例外,它需要更多的代码,更多的检查和特殊的索引逻辑,有些开发人员完全没有意识到,创建表时NULL是默认值,但大多数时候应该使用NOT NULL,或者使用一个特殊的值,如0,-1作为默  认值。
     不能用null作索引,任何包含null值的列都将不会被包含在索引中。即使索引有多列这样的情况下,只要这些列中有一列含有null,该列    就会从索引中排除。也就是说如果某列存在空值,即使对该列建索引也不会提高性能。 任何在where子句中使用is null或is not null的语句优化器是不允许使用索引的。

      此例可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
      select id    from t where num=0
 2. 应尽量避免在where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。 
   MySQL只有对以下操作符才使用索引:<,<=,=,>,>=,BETWEEN,IN,以及某些时候的LIKE。 可以在LIKE操作中使用索引的情形是指另一个操作数不是以通配符(%或者_)开头的情形。例如,“SELECT id FROM t WHERE col LIKE 'Mich%';”这个查询将使用索引,但“SELECT id FROM t WHERE col  LIKE '%ike';”这个查询不会使用索引。
 3. 应尽量避免在where 子句中使用or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,
    如:
    select id from t where num=10 or num=20
    可以这样查询:select id from t where num=10 union all select id from t where num=20
  4 .in 和not in 也要慎用,否则会导致全表扫描,
    如:
   select id from t where num in(1,2,3)
    对于连续的数值,能用between 就不要用in 了:
    select id from t where num between 1 and 3
  5.下面的查询也将导致全表扫描:
       select id from t where name like '%abc%' 或者
       select id from t where name like '%abc' 或者
       若要提高效率,可以考虑全文检索。
      而select id from t where name like 'abc%' 才用到索引
  7. 如果在where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推 迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
    select id from t where num=@num 
   可以改为强制查询使用索引:select id from t with(index(索引名)) where num=@num
 8.应尽量避免在where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。
 如:
  select id from t where num/2=100
 应改为:
  select id from t where num=100*2
9. 应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。
 如: 
select id from t where substring(name,1,3)='abc'--name 
select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id 应改为: 
select id from t where name like 'abc%'
select id from t where createdate>='2005-11-30' and createdate<'2005-12-1'
10.不要在where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
 11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
12.不要写一些没有意义的查询,
如需要生成一个空表结构:
 select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:create table #t(...) 
13.很多时候用exists 代替in 是一个好的选择:
select num from a where num in(select num from b)
 用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。
 15.索引并不是越多越好,索引固然可以提高相应的select 的效率,但同时也降低了insert 及update 的效率,因为insert 或update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
16.应尽可能的避免更新clustered 索引数据列,因为clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新clustered 索引数据列,那么需要考虑是否应将该索引建为clustered 索引。
17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。
18.尽可能的使用varchar/nvarchar 代替char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
19.任何地方都不要使用select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
 20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。
23.在新建临时表时,如果一次性插入数据量很大,那么可以使用select into 代替create table,避免造成大量log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。
24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先truncate table ,然后drop table ,这样可以避免系统表的较长时间锁定。
25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
27.与临时表一样,游标并不是不可使用。对小型数据集使用FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
28.在所有的存储过程和触发器的开始处设置SET NOCOUNT ON ,在结束时设置SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送DONE_IN_PROC 消息。

29.尽量避免大事务操作,提高系统并发能力。
30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

你可能感兴趣的:(数据库的查询优化建议整理)