- 基于协同过滤推荐算法的景点票务数据系统(python-计算机毕设)
计算机程序设计(接毕设)
推荐算法机器学习毕业设计python人工智能
摘要IABSTRACTII第1章引言1研究背景及意义1研究背景1研究意义1国内外研究现状2智慧旅游3旅游大数据3研究内容4本章小结4第2章相关技术概述5基于内容的推荐算法5基于内容的推荐算法原理5基于内容的推荐算法实现5协同过滤推荐算法6协同过滤算法原理6协同过滤算法实现7SpringBoot框架9SpringBoot简介9SpringBoot特性10SpringBoot工作原理10Vue.js框
- Django系列教程(13)——Cookie和Session应用场景及案例
l软件定制开发工作室
Django教程django
目录什么是cookie,cookie的应用场景及缺点Django中如何使用cookieCookie使用示例什么是session及session的工作原理Django中如何使用会话sessionSession使用示例小结HTTP协议本身是”无状态”的,在一次请求和下一次请求之间没有任何状态保持,服务器无法识别来自同一用户的连续请求。有了cookie和session,服务器就可以利用它们记录客户端的访
- 图论并查集小结
_C9
并查集
这周学习了并查集的有关内容,简单说一下并查集并查集主要用于处理一些不相交集合的合并问题。。使用并查集时,第一步会存在一组不相交的动态集合,一般都会使用一个整数表示集合中的一个元素。每个集合可能包含一个或多个元素,并选出集合中的某个元素作为代表。每个集合中具体包含了哪些元素是不关心的,具体选择哪个元素作为代表一般也是不关心的。我们关心的是,对于给定的元素,可以很快的找到这个元素所在的集合(的代表),
- Python 常用内建模块-base64
赔罪
Python系统学习python前端linux
目录base64小结练习base64Base64是一种用64个字符来表示任意二进制数据的方法。用记事本打开exe、jpg、pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要让记事本这样的文本处理软件能处理二进制数据,就需要一个二进制到字符串的转换方法。Base64是一种最常见的二进制编码方法。Base64的原理很简单,首先,准备一个包含64个字符的数
- 密码安全:如何识别强弱密码,并打造铁壁防线!
喵手
零基础学Java安全php开发语言
全文目录:开篇语前言:一场关于密码的角力赛目录密码的弱点:为什么弱密码是个大问题如何定义强密码?强密码的特点:举个例子:如何识别密码强弱?简单技巧帮你判断1.**密码长度:是否足够长?**示例代码演示代码解释:测试结果示例:2.**复杂度:是否包含特殊字符?**示例代码演示代码解释:测试结果示例:小结:3.**模式识别:是否包含常见模式?**️密码管理小技巧:打造更安全的数字生活1.**使用密码管
- 3.17学习小结
shulingpei
学习
乱入一个20cm三连板总结:科源制药,山水比德,新城市,金百泽,科创信息,上能电气,赛为智能,百胜智能,津荣天宇,丰立智能,国联水产,润和软件,思特奇,致远新能,盟固利,德恩精工,开创电气,诚达药业,因赛集团,中铁装配,金盾股份,华研精机,超越科技,安诺其,华策影视,英力股份,众智科技,西测测试,晶雪节能,华铭智能,飞天诚信,金道科技,领湃科技,天迈科技,零点有数,江苏雷利,依米康。jmeter怎
- ROS学习笔记之深度相机仿真、小结
要好好养胃
ROS学习笔记人工智能机器学习c++
通过Gazebo模拟kinect摄像头,并在Rviz中显示kinect摄像头数据。实现流程:kinect摄像头仿真基本流程:已经创建完毕的机器人模型,编写一个单独的xacro文件,为机器人模型添加kinect摄像头配置;将此文件集成进xacro文件;启动Gazebo,使用Rviz显示kinect摄像头信息。1.Gazebo仿真Kinect1.1新建Xacro文件,配置kinetic传感器信息//这
- 玩转 Vue 3:自定义指令让页面魔法随心而动
代码剑客588
vue.jsjavascript前端
玩转Vue3:自定义指令让页面魔法随心而动玩转Vue3:自定义指令让页面魔法随心而动什么是自定义指令?全局注册示例:高亮效果指令注册自定义指令在组件中使用局部注册与高级用法局部注册示例小结玩转Vue3:自定义指令让页面魔法随心而动在Vue3中,自定义指令为我们提供了在模板中直接操作DOM的能力,不仅可以让我们的页面效果更炫酷,还能将一些通用逻辑抽离出来,做到代码复用。本文将带你了解Vue3自定义指
- 遗传算法与深度学习实战(2)——生命模拟及其应用
盼小辉丶
遗传算法与深度学习实战深度学习人工智能遗传算法
遗传算法与深度学习实战(2)——生命模拟及其应用0.前言1.康威生命游戏1.1康威生命游戏的规则1.2实现康威生命游戏1.3空间生命和智能体模拟2.实现生命模拟3.生命模拟应用小结系列链接0.前言生命模拟是进化计算的一个特定子集,模拟了自然界中所观察到的自然过程,例如粒子或鸟群的聚集方式。生命模拟只是用来探索和优化问题的模拟形式之一,还有很多其他形式的模拟,可以更好地建模各种过程,但它们都源于康威
- oracle使用PLSQL导出表数据
web_13233421436
面试学习路线阿里巴巴oracle数据库
数据库课上布置了一个作业利用PL/SQL语言,编写一个存储过程实现针对单张表的数据导出功能,要求将给定表的数据转换成SQL语言的Insert语句,并保存在文件中。该过程以要导出的表名和保存SQL语句的文件名为参数。在网上尝试搜索了一下,中文网里没找到合适的参考文章,要么是针对特定表结构,要么是只导出特定数量的列,于是自己完成后写篇记录。首先需要定义一个导出目录,这里定义了“EXPORT_DIR”C
- Python 进程和线程-进程 vs. 线程
赔罪
Python系统学习python开发语言
目录ThreadLocal小结进程vs.线程线程切换计算密集型vs.IO密集型异步IOThreadLocal在多线程环境下,每个线程都有自己的数据。一个线程使用自己的局部变量比使用全局变量好,因为局部变量只有线程自己能看见,不会影响其他线程,而全局变量的修改必须加锁。但是局部变量也有问题,就是在函数调用的时候,传递起来很麻烦:defprocess_student(name):std=Student
- 数学 :矩阵
极客 - L U
数学矩阵线性代数
文章目录前言1.基本矩阵运算1.1矩阵加法1.2矩阵减法1.3矩阵乘法2.转置矩阵3.旋转矩阵小结【全文大纲】:https://blog.csdn.net/Engineer_LU/article/details/135149485前言在许多应用场合下,我们都需要用矩阵来表示公式,接下来简洁描述矩阵用法1.基本矩阵运算1.1矩阵加法∣a1b1c1d1∣+∣a2b2c2d2∣=∣a1+a2b1+b2c
- hive开窗函数总结
weixin_46134848
大数据hivemysql
文章目录概要整体架构流程示例1示例2小结概要hive开窗函数总结整体架构流程1.窗口函数的基本用法函数名()over()over关键字来指定函数执行的范围,包含三个分析子句:分组(partitionby)子句,排序(orderby)子句,窗口(rows)子句函数名(字段名)over(partitionbyorderbyrowsbetween)窗口大小可以通过rowsbetween…and…来限定,
- CESM1.2.1移植使用说明
༊.枕星'听光.ঌ
人工智能linux
文章目录概述环境配置cesm1_2_1配置部分环境软件压缩包改变CLM陆面模式结果文件的输出变量、特征值及频率小结概述记录用户如何在Linux系统上移植CESM1.2.1模型,并且使用CLM4.5模式创建并单点模拟算例I_2000_CLM45。环境配置1.更新系统软件源2.更新系统安装软件安装git、make、python等。3.安装MPI(openmpi4.1.5)//下载并解压进入文件夹wge
- 增量预训练和微调的区别
做个天秤座的程序猿
大模型原理webkit
文章目录前言一、增量预训练和微调的区别二、代码示例1.增量预训练示例2.微调示例3.代码的区别三、数据格式1.增量预训练2.微调3.示例4.小结四、数据量要求1.指导原则2.示例3.实际操作中的考虑4.小结前言增量预训练是一种在现有预训练模型的基础上,通过引入新的数据或任务来进一步训练模型的方法。这种方法的主要目的是在不从头开始训练模型的情况下,利用新数据或特定领域的数据增强模型的能力和性能。增量
- 玩转 Vue 3:自定义指令让页面魔法随心而动
心中的灯塔
vue.jsjavascript前端
玩转Vue3:自定义指令让页面魔法随心而动玩转Vue3:自定义指令让页面魔法随心而动什么是自定义指令?全局注册示例:高亮效果指令注册自定义指令在组件中使用局部注册与高级用法局部注册示例小结玩转Vue3:自定义指令让页面魔法随心而动在Vue3中,自定义指令为我们提供了在模板中直接操作DOM的能力,不仅可以让我们的页面效果更炫酷,还能将一些通用逻辑抽离出来,做到代码复用。本文将带你了解Vue3自定义指
- AI 之路——数据分析(1)Pandas小结与框架整理
Robin_Pi
机器学习之路数据分析数据分析python人工智能可视化
目录1.写在前面1.1AI之路:1.2工具/技能:2.数据分析2.1数据分析的流程2.2数据的基本操作方法2.2.1Pandas概览2.2.2使用Pandas操作数据的核心(1)选择数据(2)操作数据2.2.2数据详解3.写在最后1.写在前面主要是阶段性框架总结1.1AI之路:数据分析——机器学习——深度学习——CV/NLP1.2工具/技能:Python、NumPy、Pandas、Matplotl
- Python 进程与线程-分布式进程
赔罪
分布式python开发语言
目录分布式进程小结分布式进程在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信。
- 一文讲通锁标记对象std::adopt_lock盲点
郭涤生
c/c++#并发线程c++并发编程
一文讲通锁标记对象std::adopt_lock盲点1.核心概念2.代码详解1.单个锁2.多重锁(可以用来预防死锁)3.条件变量的互斥控制4.复杂示例:多生产者-多消费者模型(超纲了,可不看,哈哈哈哈)3.小结1.核心概念在C++中,std::adopt_lock是一个锁标记对象[^1],用于配合锁对象(如std::lock_guard、std::unique_lock或std::shared_l
- 软件服务中的 SLA 到底是什么?
路多辛
后端系列知识讲解SLA后端服务器
目录什么是SLASLA的组成部分SLA的重要性制定和执行SLA小结平常使用云服务或者使用SaaS服务时,厂商一般都会承诺SLA达到多少,没有达到的话会如何赔偿,例如云服务的稳定性一般会承诺4个9(即99.99%)。这里的SLA(ServiceLevelAgreement,服务等级协议)是软件服务领域中一个非常重要的概念,定义了服务提供商与客户之间的服务标准和期望。SLA的核心在于确保服务的质量和可
- 分布式存储—— HBase数据模型 详解
Future_yzx
分布式hbase数据库
目录1.3HBase数据模型1.3.1两类数据模型1.3.2数据模型的重要概念1.3.3数据模型的操作1.3.4数据模型的特殊属性1.3.5CAP原理与最终一致性1.3.6小结本文章参考、总结于学校教材课本《HBase开发与应用》1.3HBase数据模型在开始学习HBase之前非常有必要先学习HBase的特性,因此本节将介绍HBase的逻辑模型、物理模型和访问HBase的方法等。和传统的关系型数据
- 分布式存储学习——HBase表结构设计
Future_yzx
oracle数据库
目录1.4.1模式创建1.4.2Rowkey设计1.4.3列族定义1.4.3.1可配置的数据块大小1.4.3.2数据块缓存1.4.3.3布隆过滤器1.4.3.4数据压缩1.4.3.5单元时间版本1.4.3.6生存时间1.4.4模式设计实例1.4.4.1实例1:动物分类1.4.4.2实例2:店铺与商品1.4.4.3实例3:网上商城用户消费记录1.4.4.4实例4:微博用户与粉丝1.4.4.5小结本文
- 动手深度学习笔记(二十九)5.5. 读写文件
落花逐流水
pytorch实践pytorchpytorch
动手深度学习笔记(二十九)5.5.读写文件5.深度学习计算5.5.读写文件5.5.1.加载和保存张量5.5.2.加载和保存模型参数5.5.3.小结5.5.4.练习5.深度学习计算5.5.读写文件到目前为止,我们讨论了如何处理数据,以及如何构建、训练和测试深度学习模型。然而,有时我们希望保存训练的模型,以备将来在各种环境中使用(比如在部署中进行预测)。此外,当运行一个耗时较长的训练过程时,最佳的做法
- Java【网络原理】(2)初识网络续与网络编程
爱吃烤鸡翅的酸菜鱼
网络javajava-ee后端
目录1.前言2.正文2.1TCP协议与UDP协议2.2socketAPI进行网络编程2.2.1DatagramPacket类2.2.1.1发送数据报2.2.1.2接收数据报2.2.1.3获取数据报内容2.2.1.4设置数据报内容2.2.2DatagramSocket类2.2.2.1构造方法2.2.2.2常用方法2.2.3具体代码与解释3.小结1.前言哈喽大家好吖,今天继续给大家分享计算机网络相关的
- Nginx实现接口复制
m0_74823094
面试学习路线阿里巴巴nginxjunit运维
目录1、前言2、接口流复制2.1、方式一:使用mirror指令2.1.1、nginx配置2.1.2、配置说明2.1.3、测试结果2.1.4、注意事项2.2、方式二:使用Lua2.2.1、安装Openresty2.2.2、nginx配置2.2.3、配置说明2.2.4、测试结果3、小结1、前言项目中,通常会遇到一个中转服务需要往多个不同的系统推送同一份数据,传统做法是需要在Java代码侧中调用多个AP
- 21天学会FREERTOS专栏(1)--FreeRTOS概述
xiaoheshang_123
freertos
目录第1天:FreeRTOS概述1.什么是RTOS?2.FreeRTOS的特点和优势3.FreeRTOS的历史和发展4.FreeRTOS的应用场景5.为什么选择FreeRTOS?6.小结作业第1天:FreeRTOS概述1.什么是RTOS?RTOS(Real-TimeOperatingSystem)是一种实时操作系统,它的主要特点是能够在确定的时间内响应外部事件或内部事件,并完成相应的处理任务。与通
- 静态路由原理与配置
影龙帝皖
网络
目录一.路由1.概述2.路由表的形成2.1直连网段2.2非直连网段1.定义和原理2.获取方式二.路由的种类及配置方式三.路由器转发数据包的封装过程四.小结一.路由1.概述从源主机到目标主机的转发过程。2.路由表的形成2.1直连网段在路由器的接口上配置IP地址,并开启接口,即可自动生成相关的直连网段路由。2.2非直连网段1.定义和原理路由器不是通过自身直连接口所获得的通往其他网络的路径信息,需要借助
- linux文件io实训小结,linux学习之IO操作,文件IO总结
weixin_39743064
linux文件io实训小结
文件IO不带缓存,每个read和write都调用内核中的相应系统调用。文件IO常用函数:open,close,read,write,lseek对于内核而言,所有打开文件都有文件描述符引用。文件描述符是一个非负整数。当打开一个现存文件或创建一个新文件时,你诶和向进程返回一个文件描述符。当读、写一个文件时,用open返回的文件描述符标识该文件,将其作为参数传给read或write。1.open(被打开
- sklearn 支持向量机实践总结
可爱的红薯
pythonsklearn支持向量机pythonsklearn支持向量机
转自http://www.cnblogs.com/pinard/p/6117515.html之前通过一个系列对支持向量机(以下简称SVM)算法的原理做了一个总结,本文从实践的角度对scikit-learnSVM算法库的使用做一个小结。scikit-learnSVM算法库封装了libsvm和liblinear的实现,仅仅重写了算法了接口部分。1.scikit-learnSVM算法库使用概述sciki
- AIGC实战——Transformer模型
盼小辉丶
AIGCtransformer深度学习
AIGC实战——Transformer模型0.前言1.T52.GPT-3和GPT-43.ChatGPT小结系列链接0.前言我们在GPT(GenerativePre-trainedTransformer)一节所构建的GPT模型是一个解码器Transformer,它逐字符地生成文本字符串,并使用因果掩码只关注输入字符串中的前一个单词。另一些编码器Transformer,不使用因果掩码,而是关注整个输入
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文