LBP OPENCV 实现


opencv LBP 算法实现

#include "stdafx.h"
#include <opencv2\opencv.hpp>
#include <iterator>
using namespace cv;
using namespace std;

//opencv 2.0以后版本的LBP算法
template <typename _Tp> static  
void olbp_(InputArray _src, OutputArray _dst) {  
    // get matrices  
    Mat src = _src.getMat();  
    // allocate memory for result  
    _dst.create(src.rows-2, src.cols-2, CV_8UC1);  
    Mat dst = _dst.getMat();  
    // zero the result matrix  
    dst.setTo(0);  

    // calculate patterns  
    for(int i=1;i<src.rows-1;i++) {  
        cout<<endl;  
        for(int j=1;j<src.cols-1;j++) {  
              
            _Tp center = src.at<_Tp>(i,j);  
            //cout<<"center"<<(int)center<<"  ";  
            unsigned char code = 0;  
            code |= (src.at<_Tp>(i-1,j-1) >= center) << 7;  
            code |= (src.at<_Tp>(i-1,j  ) >= center) << 6;  
            code |= (src.at<_Tp>(i-1,j+1) >= center) << 5;  
            code |= (src.at<_Tp>(i  ,j+1) >= center) << 4;  
            code |= (src.at<_Tp>(i+1,j+1) >= center) << 3;  
            code |= (src.at<_Tp>(i+1,j  ) >= center) << 2;  
            code |= (src.at<_Tp>(i+1,j-1) >= center) << 1;  
            code |= (src.at<_Tp>(i  ,j-1) >= center) << 0;  
  
            dst.at<unsigned char>(i-1,j-1) = code;  
        }  
    }  
}  
  
//基于旧版本的opencv的LBP算法opencv1.0  
void LBP (IplImage *src,IplImage *dst)  
{  
    int tmp[8]={0};  
    CvScalar s;  
  
    IplImage * temp = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U,1);  
    uchar *data=(uchar*)src->imageData;  
    int step=src->widthStep;  
  
    cout<<"step"<<step<<endl;  
  
    for (int i=1;i<src->height-1;i++)  
      for(int j=1;j<src->width-1;j++)  
      {  
          int sum=0;  
          if(data[(i-1)*step+j-1]>=data[i*step+j])  
            tmp[0]=1;  
          else  
            tmp[0]=0;  
          if(data[i*step+(j-1)]>=data[i*step+j])  
            tmp[1]=1;  
          else  
            tmp[1]=0;  
          if(data[(i+1)*step+(j-1)]>=data[i*step+j])  
            tmp[2]=1;  
          else  
            tmp[2]=0;  
          if (data[(i+1)*step+j]>=data[i*step+j])  
            tmp[3]=1;  
      else  
            tmp[3]=0;  
          if (data[(i+1)*step+(j+1)]>=data[i*step+j])  
            tmp[4]=1;  
          else  
            tmp[4]=0;  
          if(data[i*step+(j+1)]>=data[i*step+j])  
            tmp[5]=1;  
          else  
            tmp[5]=0;  
          if(data[(i-1)*step+(j+1)]>=data[i*step+j])  
            tmp[6]=1;  
          else  
            tmp[6]=0;  
          if(data[(i-1)*step+j]>=data[i*step+j])  
            tmp[7]=1;  
          else  
            tmp[7]=0;     
          //计算LBP编码  
            s.val[0]=(tmp[0]*1+tmp[1]*2+tmp[2]*4+tmp[3]*8+tmp[4]*16+tmp[5]*32+tmp[6]*64+tmp[7]*128);  
          
        cvSet2D(dst,i,j,s);//写入LBP图像  
      }  
}  

IplImage* face = cvLoadImage("D://1.jpg",CV_LOAD_IMAGE_ANYDEPTH | CV_LOAD_IMAGE_ANYCOLOR);  
   
  
    IplImage* Gray_face = cvCreateImage( cvSize( face->width,face->height ), face->depth, 1);//先分配图像空间  
    cvCvtColor(face, Gray_face ,CV_BGR2GRAY);//把载入图像转换为灰度图  
    IplImage* lbp_face =   cvCreateImage(cvGetSize(Gray_face), IPL_DEPTH_8U,1);//先分配图像空间  
  
    cvNamedWindow("Gray Image",1);  
    cvShowImage("Gray Image",Gray_face);  
  
   
    Mat face2 = imread("D://1.jpg",0);  
    
  
  
    Mat lbp_face2 = Mat::zeros(face2.size(),face2.type()) ;  
   
  
  
    //显示原始的输入图像  
    cvNamedWindow("Src Image",CV_WINDOW_AUTOSIZE);  
    cvShowImage("Src Image",face);  
    //imshow("Src Image",face);  
  
    //计算输入图像的LBP纹理特征  
    LBP(Gray_face,lbp_face);  
    //olbp_<uchar>((Mat)face,(Mat)lbp_face);//有问题的调用  
    olbp_<uchar>(face2,lbp_face2);  
  
      
    //显示第一幅图像的LBP纹理特征图  
    cvNamedWindow("LBP Image",CV_WINDOW_AUTOSIZE);  
    cvShowImage("LBP Image",lbp_face);  
    //显示第二幅图 的LBP纹理特征图-一张yaleface人脸库中的人脸LBP特征图  
    namedWindow("LBP Image2",1);  
    imshow("LBP Image2",lbp_face2);  
    waitKey();  
  
    //cvReleaseImage(&face);  
    cvDestroyWindow("Src Image");  


LBP OPENCV 实现_第1张图片



你可能感兴趣的:(LBP,OEPNCV)