- 【干货】你可能不知道的 20个 Linux 网络工具
迷途不归路
转载自公众号:DevOps技术栈原文链接:http://linoxide.com/monitoring-2/network-monitoring-tools-linux/如果要在你的系统上监控网络,那么使用命令行工具是非常实用的,并且对于Linux用户来说,有着许许多多现成的工具可以使用,如:nethogs,ntopng,nload,iftop,iptraf,bmon,slurm,tcptrack
- 数学基础 -- 线性代数之格拉姆-施密特正交化
sz66cm
线性代数机器学习人工智能
格拉姆-施密特正交化格拉姆-施密特正交化(Gram-SchmidtOrthogonalization)是一种将一组线性无关的向量转换为一组两两正交向量的算法。通过该过程,我们能够从原始向量组中构造正交基,并且可以选择归一化使得向量组成为标准正交基。算法步骤假设我们有一组线性无关的向量{v1,v2,…,vn}\{v_1,v_2,\dots,v_n\}{v1,v2,…,vn},其目标是将这些向量正交化
- 人脸识别技术框架
weixin_30314813
人工智能
1、人脸检测(确定人脸的位置)。2、人脸关键点(确定眼睛,嘴角等特征位置)。3、人脸几何校正(把人脸通过缩放、旋转、拉伸等图像变化到一个比较标准的大小位置)。4、人脸光学校正(滤波,去除一些对光照敏感的面部特征)。5、人脸特征提取(包括LBP,HOG,Gabor等)。6、人脸识别转载于:https://www.cnblogs.com/lanye/p/3620621.html
- openCV【实践系列】2——OpenCV方向梯度直方图
一只长尾巴
什么是特征描述符特征描述符是图像或图像块的表示,其通过提取有用信息和丢弃无关信息来简化图像。通常,特征描述符将一个width*height*3(通道)的图像转换为长度为n的特征向量或数组。在HOG特征描述符的情况下,输入图像的大小为64×128×3,输出特征向量的长度为3780。在HOG特征描述符中,梯度方向(定向梯度)的分布(直方图)被用作特征。图像的梯度(x和y导数)是有用的,因为在边缘和角落
- 穿越阿冈昆(三):我们划船,还是扛船?
叔丁
(叔丁)走之前跟朋友说,我们去阿冈昆划船宿营去了。可是我们有多少时间在划船呢?此次我们预计八天内划船才81公里,而扛船则是9340米,这还不包括我们去Hogan’sLake一日游那天的近3000米扛船。这不是一次普通意义上的划船宿营。我们要穿越阿冈昆,不可避免就需要穿过更多的Portage。湖泊河流不总是顺从我们南北行走的方向。扛船背包,让我们可以随着心意穿越。这是我们第二次尝试一周长的扛船划船宿
- 【鹅妈妈童谣】13.To market, to market
欣然小时光
日常生活中总少不了带孩子去超市逛逛,今天就为大家介绍一首关于去市场的鹅妈妈童谣《Tomarket,tomarket》。【童谣】Tomarket,tomarket,tobuyafatpig,Homeagain,homeagain,jiggety-jig.Tomarket,tomarket,tobuyafathog,Homeagain,homeagain,jiggety-jog.去市场,去市场,去买一
- 深入探索Objective-C的NSOrthography:拼写检查的艺术与科学
2402_85758349
objective-c开发语言macos
标题:“深入探索Objective-C的NSOrthography:拼写检查的艺术与科学”在软件开发中,拼写检查是一个重要的功能,它帮助用户避免拼写错误,提高文本的准确性和专业性。Objective-C,作为iOS和macOS开发的主要语言之一,提供了NSOrthography类来处理拼写检查。本文将深入探讨NSOrthography的工作原理,并展示如何在实际应用中实现拼写检查功能。1.拼写检查
- MATLAB使用OMP实现图像的压缩感知实例
superdont
计算机视觉入门matlab计算机视觉图像处理机器学习图像加密人工智能算法
OMP(OrthogonalMatchingPursuit)是一种用于稀疏信号恢复的迭代算法。它的目标是从一组测量值中重建具有少量非零元素的信号。基本步骤以下是OMP算法的简要步骤:初始化残差:将残差初始化为测量向量。迭代过程:a.原子选择:在每次迭代中,从字典中选择与当前残差最相关的原子。b.更新估计:使用所选的原子更新信号的估计。c.更新残差:更新残差,将其减去已匹配的部分。停止条件:重复步骤
- CSS3DRenderer, CSS3DObject, OrthographicCamera API 结合使用案例
小豆包3D世界
css3前端javascript
CSS3DRenderer,CSS3DObject,OrthographicCameraAPI结合使用案例three.jscss3d-orthographicbody{background-color:#f0f0f0;}a{color:#f00;}#info{color:#000000;}three.jscss3d-orthographic{"imports":{"three":"../build
- 【MATLAB源码-第154期】基于matlab的OFDM系统多径信道下块状和梳妆两种导频插入方式误码率对比仿真。
Matlab程序猿
OFDM信道估计与均衡MATLABmatlab开发语言信息与通信
操作环境:MATLAB2022a1、算法描述OFDM(OrthogonalFrequencyDivisionMultiplexing,正交频分复用)是一种高效的无线信号传输技术,广泛应用于现代通信系统,如Wi-Fi、LTE和5G。OFDM通过将宽带信道划分为多个正交的窄带子载波来传输数据,有效地提高了频谱利用率并降低了多径传播引起的干扰。接下来,我们将详细讨论OFDM系统的关键组成部分,包括导频、
- 05基于卷积神经网络-支持向量机(自动寻优)CNN-SVM数据分类算法
机器不会学习CSJ
cnn支持向量机分类人工智能
CNN原理卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种深度学习模型,广泛用于计算机视觉领域。CNN的核心思想是通过卷积层和池化层来自动提取图像中的特征,从而实现对图像的高效处理和识别。在传统的机器学习方法中,图像特征的提取通常需要手工设计的特征提取器,如SIFT、HOG等。而CNN则可以自动从数据中学习到特征表示。这是因为CNN模型的卷积层使用了一系列的卷积核
- [PHP 反序列化参考手册]
cl1mb3r
phpandroid开发语言
一、简单的反序列化题目1.P1task.phpname==='ctf'){echogetenv('FLAG');}}}unserialize($_GET['n']);exp.phpadmin="user";$this->passwd="123456";}publicfunction__destruct(){if($this->admin==="admin"&&$this->passwd==="ct
- R-CNN、Fast R-CNN、Faster R-CNN实现
今 晚 打 老 虎
面试之CV基础知识深度学习点滴
R-CNN:传统的目标检测算法:使用穷举法(不同大小比例的滑窗)进行区域选择,时间复杂度高对提取的区域进行特征提取(HOG或者SIFT),对光照、背景等鲁棒性差使用分类器对提取的特征进行分类(SVM或Adaboost)R-CNN的过程:采用SelectiveSearch生成类别独立的候选区域使用AlexNet来提取特征,输入是227*227*3,输出是4096将4096维的特征向量送入SVM来分类
- OpenGL 投影方式、存储着色器、基本图元连接
Joker_King
投影方式正投影图像以1:1的方式绘制到屏幕上。视觉上看到的是2D平面图像。image-20200710105247748只有位于坐标系中的视图才可以被看到。GLFrustum::SetOrthographic(,,,,,)透视投影以人眼的视角进行绘制,有远小近大的效果。image-20200710105735524当我们的视窗越大,我们所能看到的范围就越大。//fFov:垂直方向上的视窗角度//f
- devServer proxy 日常配置
35108b7328fb
今天遇到一个项目中,服务那边使用的是roadhog阿里出品的打包工具服务中配置了proxy顺便看了一下proxy的文档。记录一下;希望帮助到有需要的小伙伴吧;当你拥有单独的API后端开发服务器并且希望在同一域上发送API请求时,代理某些URL可能会很有用。1.正常使用proxy:{'/api':{//这个是你要替换的位置target:'http://www.baidu.com'//这个是被替换的目
- The Hedgehogs
慧觅玺
Itwasthecoldestwinterever.Manyanimalsdiedbecauseofthecold.这是有史以来最冷的冬天。许多动物死于严寒。Thehedgehogs,realizingthesituation,decidedtogrouptogethertokeepwarm.刺猬意识到这种情况,决定聚在一起取暖。Thiswaytheycoveredandprotectedthem
- HOG特征
ce0b74704937
HOG特征是在文章《HistogramsofOrientedGradientsforHumanDetection》中提出,看文章标题可知,该文章是为了行人检测提出的,不过后来也用于其它方向,比如特征点检测等。该文中行人检测大概分为以下几步:输入图像(行人的图像)采用Gamma矫正法对输入图像进行颜色空间的标准化;目的是调节图像的对比度,降低图像局部的阴影和光照所造成的影响,同时可以抑制噪声。(原文
- 渗透测试练习题解析 3(CTF web)
安全不再安全
CTFweb前端安全网络安全web安全
1、[网鼎杯2020朱雀组]phpweb1考点:反序列化漏洞利用进入靶场,查看检查信息,发现存在两个参数func和p查看页面源代码payload:func=file_get_contents&p=php://filter/resource=index.php整理后,就是PHP代码审计了 func!=""){ echogettime($this->func,$this->p);
- 2018-12-10
冯大发
Charlottes'sWeb(ChapterⅠ)Words:hoghouse][hɔɡhaʊs]n.猪圈hogn.猪(供食用的)runt[rʌnt]n.(一胎中)最弱小的动物shriek[ʃrik]v.尖叫yell[jɛl]v.大喊sob[sɑb]v.抽噎;啜泣sopping[ˈsɑ:pɪŋ]a.湿透的=verywetweakling[ˈwiklɪŋ]n.瘦弱的人或动物carton[ˈkɑ:rt
- 34从传统算法到深度学习:目标检测入门实战 --方向梯度直方图
Jachin111
什么是方向梯度直方图在前面的实验1、实验2中,我们了解到传统的目标检测流程可分为三个步骤,第一步是使用滑动窗口和图像金字塔从图片中选择一些区域。第二步是将选择出来的区域转化为人工设计的特征,可称为特征提取。第三步是将这些特征输入分类器进行分类。方向梯度直方图(HistogramofOrientedGradients)以下简称HOG,就是一种人工设计的特征,用来简化图像表述的特征描述符。下图中左边的
- COC《部落战争》各兵种中英文名称对照
金御札
野蛮人(Barbarian)弓箭手(Archer)哥布林(Goblin)巨人(Giant)炸弹人(WallBreaker)气球兵(Balloon)法师(Wizard)天使(Healer)飞龙(Dragon)皮卡(P.E.K.K.A)亡灵(Minion)野猪骑士(HogRider)瓦基丽武神(Valkyrie)戈仑石人(Golem)女巫(Witch)野蛮人之王(BarbarianKing)弓箭女皇(
- 【SpringBootStarter】自定义全局加解密组件
xbhog
Java源码&设计模式springboot后端java
【SpringBootStarter】目的了解SpringBootStarter相关概念以及开发流程实现自定义SpringBootStarter(全局加解密)了解测试流程优化最终引用的效果:com.xbhogglobalValidation-spring-boot-starter1.0.0【开源地址】https://gitee.com/xbhog/encry-adecry-spring-boot-
- Open CASCADE学习|保存为STL文件
老歌老听老掉牙
OpenCASCADE学习c++OpenCASCADE
STL(Stereolithography)文件是一种广泛用于3D打印和计算机辅助设计(CAD)领域的文件格式。它描述了一个三维模型的表面而不包含颜色、材质或其他非几何信息。STL文件通常用于3D打印过程中,因为它们仅包含构建物体所需的位置信息。由于STL文件只包含表面信息,因此在导出过程中可能会丢失一些细节,特别是当模型具有非常小的特征或内部几何结构时。因此,在导出之前,最好确保你的模型是“水密
- Paper-50 病原菌的挥发性代谢物:系统综述(PlosPathogens,2013) 2021-02-28
RashidinAbdu
原文:VolatileMetabolitesofPathogens:ASystematicReview作者:LieuweD.J.Bos,PeterJ.Sterk,MarcusJ.SchultzDOI:https://doi.org/10.1371/journal.ppat.1003311作者单位:DepartmentofIntensiveCare,AcademicMedicalCenter,Uni
- Git实战(五)| 让工作更高效,搞定Git的分支管理
霍格沃兹测试开发学社
上一篇讲到Git的分支管理实操,在线合并和本地合并都进行了实操。毕竟:光说不练是假把式。而只练不整理,只能是傻把式了。分支管理到底如何进行管理呢?先以GitLab上的一张经典的图打头,作为一个总体概览,也方便理解分支的管理和走向:图片场景预设图片现假设公司有名为Hogwarts_Online2的开发项目,其中包含了上线分支master,开发分支develop,测试分支release,和个人开发的特
- 使用Python,Opencv检测图像,视频中的猫
程序媛一枚~
PythonOpenCV图像处理深度学习opencvpython音视频haarcascade级联检测器
使用Python,Opencv检测图像,视频中的猫这篇博客将介绍如何使用Python,OpenCV库附带的默认Haar级联检测器来检测图像中的猫。同样的技术也可以应用于视频流。这些哈尔级联由约瑟夫·豪斯(JosephHowse)训练并贡献给OpenCV项目。虽然哈尔级联非常有用,但通常使用HOG+线性SVM,因为它更容易调整检测器参数,更重要的是可以享受更低的假阳性检测率。在haarcscades
- 使用BlueZ连接蓝牙手柄
Dokin丶
Linux蓝牙蓝牙手柄joystickLinuxBlueZ
一、HOGP协议常见的蓝牙鼠标、蓝牙键盘、蓝牙手柄,它们都属于HID设备,但与有线设备不同的是,有线鼠标等设备属于USBHID设备,而蓝牙鼠标等设备属于BluetoothHID设备,即协议是一样的,只是通信方式不同。HOGP是HIDOverGATTProfile的缩写,即蓝牙HID设备是通过BLE的GATT来实现HID协议的。下图是手机BLE调试APP扫描获取到的手柄广播信息,点击"RAW"后可以
- 正交矩阵的定义和性质、正定矩阵如何判定、线性代数中的重要考点
笨爪
线性代数矩阵机器学习numpy算法
正交矩阵(Orthogonalmatrix)是指矩阵的转置和其逆矩阵相等的矩阵,即A^T=A^(-1)。正定矩阵(Positivedefinitematrix)是指对于任意的非零向量x,x^TAx>0,即对于矩阵A的每一个特征值均为正数。正交矩阵的性质有:对于任意的两个向量x和y,都有x^Ty=0,即x和y是正交的。对于任意的向量x,都有x^TAx=x^Tx,即矩阵A不会改变向量的长度。矩阵A的行
- 计算机项目 开发去哪儿网App
g6677789
前端javascriptvue.js考研改行学it青少年编程
Vue起步深入理解Vue组件Vue中的动画特效项目实战-旅游网站首页开发项目实战-旅游网站城市列表页面开发实战项目-项目的联调,测试与发布上线Vue-cli4.0升级链接:计算机项目开发去哪儿网https://pan.baidu.com/s/1AB28UHogx4wwIFJr6Zkgzg?pwd=ytip提取码:ytip
- Three.js学习6:透视相机和正交相机
stones4zd
three.js数码相机学习
一、相机相机camera,可以理解为摄像机。在拍影视剧的时候,最终用户看到的画面都是相机拍出来的内容。Three.js里,相机camera里的内容就是用户能看到的内容。从这个角度来看,相机其实就是用户的视野,就像用户的眼睛。Three.js主要有四种不同的相机模式:透视相机PerspectiveCamera:具有透视效果,近大远小,也是用的最多的相机。正交相机OrthographicCamera:
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。