非递归遍历二叉树

1.先序遍历

从递归说起

1.void preOrder(TNode* root)
2.{
3.    if (root != NULL)
4.    {
5.        Visit(root);
6.        preOrder(root->left);
7.        preOrder(root->right);
8.    }
9.}
递归算法非常的简单。先访问跟节点,然后访问左节点,再访问右节点。如果不用递归,那该怎么做呢?仔细看一下递归程序,就会发现,其实每次都是走树的左分支(left),直到左子树为空,然后开始从递归的最深处返回,然后开始恢复递归现场,访问右子树。

其实过程很简单:一直往左走 root->left->left->left...->null,由于是先序遍历,因此一遇到节点,便需要立即访问;由于一直走到最左边后,需要逐步返回到父节点访问右节点,因此必须有一个措施能够对节点序列回溯。

有两个办法:
1.用栈记忆:在访问途中将依次遇到的节点保存下来。由于节点出现次序与恢复次序是反序的,因此是一个先进后出结构,需要用栈。
使用栈记忆的实现有两个版本。第一个版本是模拟递归的实现效果,跟LX讨论的,第二个版本是直接模拟递归。
2.节点增加指向父节点的指针:通过指向父节点的指针来回溯(后来发现还要需要增加一个访问标志,来指示节点是否已经被访问,不知道可不可以不用标志直接实现回溯?想了一下,如果不用这个标志位,回溯的过程会繁琐很多。暂时没有更好的办法。)

(还有其他办法可以回溯么?)


这3个算法伪代码如下,没有测试过。

先序遍历伪代码:非递归版本,用栈实现,版本1

1.// 先序遍历伪代码:非递归版本,用栈实现,版本1

2.void preOrder1(TNode* root)
3.{
4.    Stack S;
5.    while ((root != NULL) || !S.empty())
6.    {
7.        if (root != NULL)
8.        {
9.            Visit(root);
10.            S.push(root);       // 先序就体现在这里了,先访问,再入栈

11.            root = root->left;  // 依次访问左子树

12.        }
13.        else

14.        {
15.            root = S.pop();     // 回溯至父亲节点

16.            root = root->right;
17.        }
18.    }
19.}
preOrder1每次都将遇到的节点压入栈,当左子树遍历完毕后才从栈中弹出最后一个访问的节点,访问其右子树。在同一层中,不可能同时有两个节点压入栈,因此栈的大小空间为O(h),h为二叉树高度。时间方面,每个节点都被压入栈一次,弹出栈一次,访问一次,复杂度为O(n)

 

 先序遍历伪代码:非递归版本,用栈实现,版本2
1.

2.// 先序遍历伪代码:非递归版本,用栈实现,版本2

3.void preOrder2(TNode* root)
4.{
5.    if ( root != NULL)
6.    {
7.        Stack S;
8.        S.push(root);
9.        while (!S.empty())
10.        {
11.            TNode* node = S.pop();
12.

13.            Visit(node);          // 先访问根节点,然后根节点就无需入栈了

14.            S.push(node->right);  // 先push的是右节点,再是左节点

15.            S.push(node->left);
16.        }
17.    }
18.}
preOrder2每次将节点压入栈,然后弹出,压右子树,再压入左子树,在遍历过程中,遍历序列的右节点依次被存入栈,左节点逐次被访问。同一时刻,栈中元素为m-1个右节点和1个最左节点,最高为h。所以空间也为O(h);每个节点同样被压栈一次,弹栈一次,访问一次,时间复杂度O(n)


先序遍历伪代码:非递归版本,不用栈,增加指向父节点的指针

1.// 先序遍历伪代码:非递归版本,不用栈,增加指向父节点的指针

2.void preOrder3(TNode* root)
3.{
4.    while ( root != NULL ) // 回溯到根节点时为NULL,退出

5.    {
6.        if( !root->bVisited )
7.        {   // 判定是否已被访问

8.            Visit(root);
9.            root->bVisited = true;
10.        }
11.        if ( root->left != NULL && !root->left->bVisited )      // 访问左子树

12.        {
13.            root = root->left;
14.        }
15.        else if( root->right != NULL && !root->right->bVisited ) // 访问右子树

16.        {
17.            root = root->right;
18.        }
19.        else   // 回溯

20.        {
21.            root = root->parent;
22.        }
23.    }
24.}
preOrder3的关键在于回溯。为了回溯增加指向父亲节点的指针,以及是否已经访问的标志位,对比preOrder1与preOrder2,但增加的空间复杂度为O(n)。时间方面,每个节点被访问一次。但是,当由叶子节点跳到下一个要访问的节点时,需要先回溯至父亲节点,再判断是否存在没有被访问过的右子树,如果没有,则继续回溯,直至找到一颗没有被访问过的右子树,这个过程需要很多的时间。每个叶子节点的回溯需要O(h)时间复杂度,叶子节点最多为(2^(h-1)),因此回溯花费的上限为O(h*(2^(h-1))。这个上限应该可以缩小。preOrder3唯一的好处是不需要额外的数据结构-栈。

 

2.中序遍历
根据上面的先序遍历,可以类似的构造出中序遍历的三种方式。仔细想一下,只有第一种方法改过来时最方便的。需要的改动仅仅调换一下节点访问的次序,先序是先访问,再入栈;而中序则是先入栈,弹栈后再访问。伪代码如下。时间复杂度与空间复杂度同先序一致。

1.2.// 中序遍历伪代码:非递归版本,用栈实现,版本1

3.void InOrder1(TNode* root)
4.{
5.    Stack S;
6.    while ( root != NULL || !S.empty() )
7.    {
8.        while( root != NULL )   // 左子树入栈

9.        {
10.            S.push(root);
11.            root = root->left;
12.        }
13.        if ( !S.empty() )
14.        {
15.            root = S.pop();
16.            Visit(root->data);   // 访问根结点

17.            root = root->right;  // 通过下一次循环实现右子树遍历 18.        }
19.    }
20.}
第二个用栈的版本却并不乐观。preOrder2能够很好的执行的原因是,将左右节点压入栈后,根节点就再也用不着了;而中序和后序却不一样,左右节点入栈后,根节点后面还需要访问。因此三个节点都要入栈,而且入栈的先后顺序必须为:右节点,根节点,左节点。但是,当入栈以后,根节点与其左右子树的节点就分不清楚了。因此必须引入一个标志位,表示 是否已经将该节点的左右子树入栈了。每次入栈时,根节点标志位为true,左右子树标志位为false。
伪代码如下:


1.

2.// 中序遍历伪代码:非递归版本,用栈实现,版本2

3.void InOrder2(TNode* root)
4.{
5.    Stack S;
6.    if( root != NULL )
7.    {
8.        S.push(root);
9.    }
10.    while ( !S.empty() )
11.    {
12.        TNode* node = S.pop();
13.        if ( node->bPushed )
14.        {   // 如果标识位为true,则表示其左右子树都已经入栈,那么现在就需要访问该节点了

15.            Visit(node);       
16.        }
17.        else

18.        {   // 左右子树尚未入栈,则依次将 右节点,根节点,左节点 入栈

19.            if ( node->right != NULL )
20.            {
21.                node->right->bPushed = false; // 左右子树均设置为false

22.                S.push(node->right);
23.            }
24.            node->bPushed = true;  // 根节点标志位为true

25.            S.push(node);
26.            if ( node->left != NULL )
27.            {
28.                node->left->bPushed = false;
29.                S.push(node->left);
30.            }
31.        }
32.    }
33.}
对比先序遍历,这个算法需要额外的增加O(n)的标志位空间。另外,栈空间也扩大,因为每次压栈的时候都压入根节点与左右节点,因此栈空间为O(n)。时间复杂度方面,每个节点压栈两次,作为子节点压栈一次,作为根节点压栈一次,弹栈也是两次。因此无论从哪个方面讲,这个方法效率都不及InOrder1。

 

至于不用栈来实现中序遍历。头晕了,暂时不想了。后面再来完善。还有后序遍历,貌似更复杂。对了,还有个层序遍历。再写一篇吧。头都大了。

 

9.8续

中序遍历的第三个非递归版本:采用指向父节点的指针回溯。这个与先序遍历是非常类似的,不同之处在于,先序遍历只要一遇到节点,那么没有被访问那么立即访问,访问完毕后尝试向左走,如果左孩子补课访问,则尝试右边走,如果左右皆不可访问,则回溯;中序遍历是先尝试向左走,一直到左边不通后访问当前节点,然后尝试向右走,右边不通,则回溯。(这里不通的意思是:节点不为空,且没有被访问过)

1.

2.// 中序遍历伪代码:非递归版本,不用栈,增加指向父节点的指针

3.void InOrder3(TNode* root)
4.{
5.    while ( root != NULL ) // 回溯到根节点时为NULL,退出

6.    {
7.        while ( root->left != NULL && !root->left->bVisited )
8.        {                  // 沿左子树向下搜索当前子树尚未访问的最左节点           

9.            root = root->left;
10.        }
11.        if ( !root->bVisited )
12.        {                  // 访问尚未访问的最左节点

13.            Visit(root);
14.            root->bVisited=true;
15.        }
16.        if ( root->right != NULL && !root->right->bVisited )
17.        {                  // 遍历当前节点的右子树  

18.            root = root->right;
19.        }
20.        else

21.        {                 // 回溯至父节点

22.            root = root->parent;
23.        }
24.    }
25.}
这个算法时间复杂度与空间复杂度与第3个先序遍历的版本是一样的。

 

3.后序遍历

从直觉上来说,后序遍历对比中序遍历难度要增大很多。因为中序遍历节点序列有一点的连续性,而后续遍历则感觉有一定的跳跃性。先左,再右,最后才中间节点;访问左子树后,需要跳转到右子树,右子树访问完毕了再回溯至根节点并访问之。这种序列的不连续造成实现前面先序与中序类似的第1个与第3个版本比较困难。但是按照第2个思想,直接来模拟递归还是非常容易的。如下:

1.// 后序遍历伪代码:非递归版本,用栈实现 2.void PostOrder(TNode* root)
3.{
4.    Stack S;
5.    if( root != NULL )
6.    {
7.        S.push(root);
8.    }
9.    while ( !S.empty() )
10.    {
11.        TNode* node = S.pop();
12.        if ( node->bPushed )
13.        {   // 如果标识位为true,则表示其左右子树都已经入栈,那么现在就需要访问该节点了

14.            Visit(node);       
15.        }
16.        else

17.        {   // 左右子树尚未入栈,则依次将 右节点,左节点,根节点 入栈

18.            if ( node->right != NULL )
19.            {
20.                node->right->bPushed = false; // 左右子树均设置为false

21.                S.push(node->right);
22.            }
23.            if ( node->left != NULL )
24.            {
25.                node->left->bPushed = false;
26.                S.push(node->left);
27.            }
28.            node->bPushed = true;            // 根节点标志位为true

29.            S.push(node);
30.        }
31.    }
32.}
和中序遍历的第2个版本比较,仅仅只是把左孩子入栈和根节点入栈顺序调换一下;这种差别就跟递归版本的中序与后序一样。

 

4.层序遍历

这个很简单,就不说老。

1.// 层序遍历伪代码:非递归版本,用队列完成 2.void LevelOrder(TNode *root)
3.{
4.    Queue Q;
5.    Q.push(root);
6.

7.    while (!Q.empty())
8.    {
9.        node = Q.front();        // 取出队首值并访问

10.        Visit(node);
11.

12.        if (NULL != node->left)  // 左孩子入队

13.        {         
14.            Q.push(node->left);   
15.        }
16.        if (NULL != node->right) // 右孩子入队

17.        {
18.            Q.push(node->right);
19.        }
20.    }
21.}
小结一下:

用栈来实现比增加指向父节点指针回溯更方便;

采用第一个思想,就是跟踪指针移动 用栈保存中间结果的实现方式,先序与中序难度一致,后序很困难。先序与中序只需要修改一下访问的位置即可。

采用第二个思想,直接用栈来模拟递归,先序非常简单;而中序与后序难度一致。先序简单是因为节点可以直接访问,访问完毕后无需记录。而中序与后序时,节点在弹栈后还不能立即访问,还需要等其他节点访问完毕后才能访问,因此节点需要设置标志位来判定,因此需要额外的O(n)空间。

 

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/kofsky/archive/2008/09/05/2886453.aspx

你可能感兴趣的:(非递归遍历二叉树)