uclinux内核的console

 

快乐虾

http://blog.csdn.net/lights_joy/

[email protected]

本文适用于

ADI bf561 DSP

优视BF561EVB开发板

uclinux-2008r1.5-rc3 (smp patch)

Visual DSP++ 5.0 (update 5)

 

 

欢迎转载,但请保留作者信息


内核中与console相关的结构体可以分为通用定义与不同体系结构的定义两部分,通用定义与具体的硬件无关,它只是定义了一类硬件的通用参数与接口,不同的体系结构下还需要加上一些特有的东西。

1.1    串口通用定义
1.1.1   uart_ops
这个结构体的定义位于include/linux/serial_core.h,它定义了UART要实现的操作:

/*

 * This structure describes all the operations that can be

 * done on the physical hardware.

 */

struct uart_ops {

     unsigned int  (*tx_empty)(struct uart_port *);

     void     (*set_mctrl)(struct uart_port *, unsigned int mctrl);

     unsigned int  (*get_mctrl)(struct uart_port *);

     void     (*stop_tx)(struct uart_port *);

     void     (*start_tx)(struct uart_port *);

     void     (*send_xchar)(struct uart_port *, char ch);

     void     (*stop_rx)(struct uart_port *);

     void     (*enable_ms)(struct uart_port *);

     void     (*break_ctl)(struct uart_port *, int ctl);

     int      (*startup)(struct uart_port *);

     void     (*shutdown)(struct uart_port *);

     void     (*set_termios)(struct uart_port *, struct ktermios *new,

                          struct ktermios *old);

     void     (*pm)(struct uart_port *, unsigned int state,

                    unsigned int oldstate);

     int      (*set_wake)(struct uart_port *, unsigned int state);

 

     /*

      * Return a string describing the type of the port

      */

     const char *(*type)(struct uart_port *);

 

     /*

      * Release IO and memory resources used by the port.

      * This includes iounmap if necessary.

      */

     void     (*release_port)(struct uart_port *);

 

     /*

      * Request IO and memory resources used by the port.

      * This includes iomapping the port if necessary.

      */

     int      (*request_port)(struct uart_port *);

     void     (*config_port)(struct uart_port *, int);

     int      (*verify_port)(struct uart_port *, struct serial_struct *);

     int      (*ioctl)(struct uart_port *, unsigned int, unsigned long);

};

 

1.1.2   uart_port
这个结构体的定义位于include/linux/serial_core.h,从它的位置可以看出,这是一个与具体硬件无关的结构体,它提供了对UART的描述信息,对于某个具体的UART,可能只使用其中的某些字段。

struct uart_port {

     spinlock_t         lock;              /* port lock */

     unsigned int       iobase;            /* in/out[bwl] */

     unsigned char __iomem  *membase;     /* read/write[bwl] */

     unsigned int       irq;          /* irq number */

     unsigned int       uartclk;      /* base uart clock */

     unsigned int       fifosize;     /* tx fifo size */

     unsigned char      x_char;            /* xon/xoff char */

     unsigned char      regshift;     /* reg offset shift */

     unsigned char      iotype;            /* io access style */

     unsigned char      unused1;

 

     unsigned int       read_status_mask;  /* driver specific */

     unsigned int       ignore_status_mask;    /* driver specific */

     struct uart_info   *info;             /* pointer to parent info */

     struct uart_icount icount;            /* statistics */

 

     struct console         *cons;             /* struct console, if any */

 

     upf_t              flags;

 

     unsigned int       mctrl;             /* current modem ctrl settings */

     unsigned int       timeout;      /* character-based timeout */

     unsigned int       type;              /* port type */

     const struct uart_ops  *ops;

     unsigned int       custom_divisor;

     unsigned int       line;              /* port index */

     unsigned long      mapbase;      /* for ioremap */

     struct device      *dev;              /* parent device */

     unsigned char      hub6;              /* this should be in the 8250 driver */

     unsigned char      unused[3];

     void          *private_data;         /* generic platform data pointer */

};

在内核中,没有为uart_port定义独立的变量,它将从属于某个具体的serial_port,对于bf561,它将从属于bfin_serial_port这一结构体。

实际上内核只使用了以下几个成员:

l         uartclk:这个值将设置为BF561的系统时钟频率,在我的系统中,它将为99M。

l         ops:定义对UART的操作函数,指向bfin_serial_pops这一变量。

l         line:串口序号,只有一个串口,恒为0。

l         iotype:取UPIO_MEM,即直接寄存器访问方式。

l         membase:指向UART_THR(0xFFC0 0400),即UART的发送寄存器。

l         mapbase:与membase相同。

l         irq:内核中中断描述数组(irq_desc)的序号,指UART接收中断(IRQ_UART_RX)。

l         flags:配置为UPF_BOOT_AUTOCONF。

 

 

1.2    不同体系结构下的串口定义
1.2.1   bfin_serial_port
这个结构体的定义在include/asm/mach/bfin-serial-5xx.h中:

struct bfin_serial_port {

        struct uart_port        port;

        unsigned int            old_status;

         unsigned int lsr;

#ifdef CONFIG_SERIAL_BFIN_DMA

     int           tx_done;

     int           tx_count;

     struct circ_buf        rx_dma_buf;

     struct timer_list       rx_dma_timer;

     int           rx_dma_nrows;

     unsigned int       tx_dma_channel;

     unsigned int       rx_dma_channel;

     struct work_struct tx_dma_workqueue;

#endif

};

此结构体在uart_port的基础上,扩充了几个成员。

在内核中,有这样的定义:

struct bfin_serial_port bfin_serial_ports[NR_PORTS];

在这里,NR_PORTS的值为1,对UART的所有操作都将通过这一变量来完成。

需要注意的是rx_dma_timer这个成员,在串口初始化的时候,它将调用

         init_timer(&(bfin_serial_ports[i].rx_dma_timer));

向内核注册一个时钟源。

1.3    console
这个结构体的定义在include/linux/console.h中,它定义了一个console驱动需要提供的信息及其必须实现的一些操作:

/*

 * The interface for a console, or any other device that wants to capture

 * console messages (printer driver?)

 *

 * If a console driver is marked CON_BOOT then it will be auto-unregistered

 * when the first real console is registered.  This is for early-printk drivers.

 */

 

struct console {

     char name[16];

     void (*write)(struct console *, const char *, unsigned);

     int  (*read)(struct console *, char *, unsigned);

     struct tty_driver *(*device)(struct console *, int *);

     void (*unblank)(void);

     int  (*setup)(struct console *, char *);

     short    flags;

     short    index;

     int  cflag;

     void *data;

     struct   console *next;

};

在内核中,对此结构体初始化为:

static struct console bfin_serial_console = {

     .name         = BFIN_SERIAL_NAME,   // 即”ttyBF”

     .write        = bfin_serial_console_write,

     .device       = uart_console_device,

     .setup        = bfin_serial_console_setup,

     .flags        = CON_PRINTBUFFER,

     .index        = -1,

     .data         = &bfin_serial_reg,

};

而console中的cflag则保存了串口配置,如CREAD | HUPCL | CLOCAL | B57600 | CS8,使用它即可知道当前的串口配置。

flags的值在初始化完成后则变成了CON_PRINTBUFFER | CON_ENABLED | CON_CONSDEV。

index的值在初始化完成后变成0,因为只使用serial console。

这里值得注意的是setup回调函数,当console初始化时,它需要初始化与此console相关的硬件,此时它将调用setup这一回调函数来完成此工作。

1.4    ktermios
这个结构体用于定义一个终端需要使用的参数:

struct ktermios {

     tcflag_t c_iflag;               /* input mode flags */

     tcflag_t c_oflag;               /* output mode flags */

     tcflag_t c_cflag;               /* control mode flags */

     tcflag_t c_lflag;               /* local mode flags */

     cc_t c_line;                    /* line discipline */

     cc_t c_cc[NCCS];                /* control characters */

     speed_t c_ispeed;               /* input speed */

     speed_t c_ospeed;               /* output speed */

};

它并没有定义相关的结构体,仅仅用于向bfin_serial_set_termios传递参数。

几个比较重要的值:

c_cflag:串口的波特率、校验位、字长这几个参数都通过这个标志来传递。

 

1       参考资料


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/lights_joy/archive/2009/01/31/3855503.aspx

 

在内核启动初期,为了尽可能早地输出一些调试信息,可以在配置时选择使用early console,其选项为CONFIG_EARLY_PRINTK,然后通过earlyprintk=??传递一个参数进去。当内核检测到earlyprintk这一参数时,它将调用setup_early_printk函数初始化BF561内部的UART,然后注册一个console,这样printk的信息就可以通过串口输出。earlyprintk参数的分析参见《uclinux内核参数处理(5):earlyprintk》。

1.1    全局变量
1.1.1   bfin_serial_pops
这个全局变量用以指定对bf561内部串口进行操作的一些回调函数,其定义为:

static struct uart_ops bfin_serial_pops = {

     .tx_empty = bfin_serial_tx_empty,

     .set_mctrl    = bfin_serial_set_mctrl,

     .get_mctrl    = bfin_serial_get_mctrl,

     .stop_tx = bfin_serial_stop_tx,

     .start_tx = bfin_serial_start_tx,

     .stop_rx = bfin_serial_stop_rx,

     .enable_ms    = bfin_serial_enable_ms,

     .break_ctl    = bfin_serial_break_ctl,

     .startup = bfin_serial_startup,

     .shutdown = bfin_serial_shutdown,

     .set_termios  = bfin_serial_set_termios,

     .type         = bfin_serial_type,

     .release_port = bfin_serial_release_port,

     .request_port = bfin_serial_request_port,

     .config_port  = bfin_serial_config_port,

     .verify_port  = bfin_serial_verify_port,

};

 

 

1.1.2   bfin_serial_ports
这个全局变量的定义为:

struct bfin_serial_port bfin_serial_ports[NR_PORTS];

在这里NR_PORTS的值为1。

这个全局变量的初始化由bfin_serial_init_ports函数完成,经过此函数的初始化后,此变量的值为:

struct bfin_serial_port {

        struct uart_port        port;

struct uart_port {

     spinlock_t         lock;              /* port lock */

     unsigned int       iobase;            /* in/out[bwl] */

     unsigned char __iomem  *membase;     /*指向UART_THR(0xFFC0 0400),即UART的发送寄存器。 */

     unsigned int       irq;          /* 取IRQ_UART_RX */

     unsigned int       uartclk;      /* 取SCLK */

     unsigned int       fifosize;     /* tx fifo size */

     unsigned char      x_char;            /* xon/xoff char */

     unsigned char      regshift;     /* reg offset shift */

     unsigned char      iotype;            /* UPIO_MEM,以直接寄存器访问方式进行操作 */

     unsigned char      unused1;

 

     unsigned int       read_status_mask;  /* driver specific */

     unsigned int       ignore_status_mask;    /* driver specific */

     struct uart_info   *info;             /* pointer to parent info */

     struct uart_icount icount;            /* statistics */

 

     struct console         *cons;             /* struct console, if any */

 

     upf_t              flags;     /* 取UPF_BOOT_AUTOCONF */

 

     unsigned int       mctrl;             /* current modem ctrl settings */

     unsigned int       timeout;      /* character-based timeout */

     unsigned int       type;              /* port type */

     const struct uart_ops  *ops;         /* 指向bfin_serial_pops */

     unsigned int       custom_divisor;

     unsigned int       line;              /* 串口序号,取0 */

     unsigned long      mapbase;      /*指向UART_THR(0xFFC0 0400),即UART的发送寄存器。 */

     struct device      *dev;              /* parent device */

     unsigned char      hub6;              /* this should be in the 8250 driver */

     unsigned char      unused[3];

     void          *private_data;         /* generic platform data pointer */

};

 

        unsigned int            old_status;

         unsigned int lsr;

#ifdef CONFIG_SERIAL_BFIN_DMA

     int           tx_done;           /* 初始化为1 */

     int           tx_count;          /* 初始化为0 */

     struct circ_buf        rx_dma_buf;

     struct timer_list       rx_dma_timer;

     int           rx_dma_nrows;

     unsigned int       tx_dma_channel;  /* 取18,即CH_UART_TX */

     unsigned int       rx_dma_channel;  /* 取17,即CH_UART_RX */

     struct work_struct tx_dma_workqueue;

#endif

};

 

1.1.3   bfin_early_serial_console
这个就是得以使用的early console的全局变量,其定义为:

static struct __init console bfin_early_serial_console = {

     .name = "early_BFuart",

     .write = early_serial_write,

     .device = uart_console_device,

     .flags = CON_PRINTBUFFER,

     .setup = bfin_serial_console_setup,

     .index = -1,

     .data  = &bfin_serial_reg,

};

经过初始化后,flags的值将变为 CON_PRINTBUFFER | CON_BOOT 。

 

1.1.4   bfin_serial_reg
这个全局变量的定义为:

static struct uart_driver bfin_serial_reg = {

     .owner             = THIS_MODULE,

     .driver_name       = "bfin-uart",

     .dev_name     = BFIN_SERIAL_NAME,

     .major             = BFIN_SERIAL_MAJOR,

     .minor             = BFIN_SERIAL_MINOR,

     .nr           = NR_PORTS,

     .cons              = BFIN_SERIAL_CONSOLE,

};

 

 

 

1.2    初始化过程
1.2.1   setup_early_printk
当内核调用此函数时,仅仅做了一些最基本的硬件初始化工作,如CCLK,EBIU等。下面看看它的实现:

int __init setup_early_printk(char *buf)

{

 

     /* Crashing in here would be really bad, so check both the var

        and the pointer before we start using it

      */

     if (!buf)

         return 0;

 

     if (!*buf)

         return 0;

 

     if (early_console != NULL)

         return 0;

 

#ifdef CONFIG_SERIAL_BFIN

     /* Check for Blackfin Serial */

     if (!strncmp(buf, "serial,uart", 11)) {

         buf += 11;

         early_console = earlyserial_init(buf);

     }

#endif

#ifdef CONFIG_FB

         /* TODO: add framebuffer console support */

#endif

 

     if (likely(early_console)) {

         early_console->flags |= CON_BOOT;

 

         register_console(early_console);

         printk(KERN_INFO "early printk enabled on %s%d/n",

              early_console->name,

              early_console->index);

     }

 

     return 0;

}

这段代码在简单判断后,有两个关键的调用。第一个是earlyserial_init,用以初始化串口的硬件参数。第二个调用是register_console,用以注册一个console结构体,同时输出printk缓冲区中的已有数据。

1.2.2   earlyserial_init
这一函数的实现为:

static struct console * __init earlyserial_init(char *buf)

{

     int baud, bit;

     char parity;

     unsigned int serial_port = DEFAULT_PORT;

     unsigned int cflag = DEFAULT_CFLAG;

 

     serial_port = simple_strtoul(buf, &buf, 10);

     buf++;

 

     cflag = 0;

     baud = simple_strtoul(buf, &buf, 10);

     switch (baud) {

     case 1200:

         cflag |= B1200;

         break;

     case 2400:

         cflag |= B2400;

         break;

     case 4800:

         cflag |= B4800;

         break;

     case 9600:

         cflag |= B9600;

         break;

     case 19200:

         cflag |= B19200;

         break;

     case 38400:

         cflag |= B38400;

         break;

     case 115200:

         cflag |= B115200;

         break;

     default:

         cflag |= B57600;

     }

 

     parity = buf[0];

     buf++;

     switch (parity) {

     case 'e':

         cflag |= PARENB;

         break;

     case 'o':

         cflag |= PARODD;

         break;

     }

 

     bit = simple_strtoul(buf, &buf, 10);

     switch (bit) {

     case 5:

         cflag |= CS5;

         break;

     case 6:

         cflag |= CS5;

         break;

     case 7:

         cflag |= CS5;

         break;

     default:

         cflag |= CS8;

     }

 

#ifdef CONFIG_SERIAL_BFIN

     return bfin_earlyserial_init(serial_port, cflag);

#else

     return NULL;

#endif

 

}

很简单,实际上就是提取earlyprintk中的参数,将之转换为serial_port和cflag两个数值,然后调用bfin_earlyserial_init函数来初始化串口。

1.2.3   bfin_earlyserial_init
此函数如下所示:

struct console __init *bfin_earlyserial_init(unsigned int port,

                            unsigned int cflag)

{

     struct bfin_serial_port *uart;

     struct ktermios t;

 

     if (port == -1 || port >= nr_ports)

         port = 0;

     bfin_serial_init_ports();

     bfin_early_serial_console.index = port;

     uart = &bfin_serial_ports[port];

     t.c_cflag = cflag;

     t.c_iflag = 0;

     t.c_oflag = 0;

     t.c_lflag = ICANON;

     t.c_line = port;

     bfin_serial_set_termios(&uart->port, &t, &t);

     return &bfin_early_serial_console;

}

这个函数除了初始化硬件参数之外,还要构造一个console结构体。

1.2.3.1             bfin_serial_init_ports
这个函数由bfin_earlyserial_init调用,其实现为:

static void __init bfin_serial_init_ports(void)

{

     static int first = 1;

     int i;

 

     if (!first)

         return;

     first = 0;

 

     for (i = 0; i < nr_ports; i++) {

         bfin_serial_ports[i].port.uartclk   = get_sclk();

         bfin_serial_ports[i].port.ops       = &bfin_serial_pops;

         bfin_serial_ports[i].port.line      = i;

         bfin_serial_ports[i].port.iotype    = UPIO_MEM;

         bfin_serial_ports[i].port.membase   =

              (void __iomem *)bfin_serial_resource[i].uart_base_addr;

         bfin_serial_ports[i].port.mapbase   =

              bfin_serial_resource[i].uart_base_addr;

         bfin_serial_ports[i].port.irq       =

              bfin_serial_resource[i].uart_irq;

         bfin_serial_ports[i].port.flags     = UPF_BOOT_AUTOCONF;

#ifdef CONFIG_SERIAL_BFIN_DMA

         bfin_serial_ports[i].tx_done         = 1;

         bfin_serial_ports[i].tx_count        = 0;

         bfin_serial_ports[i].tx_dma_channel =

              bfin_serial_resource[i].uart_tx_dma_channel;

         bfin_serial_ports[i].rx_dma_channel =

              bfin_serial_resource[i].uart_rx_dma_channel;

         init_timer(&(bfin_serial_ports[i].rx_dma_timer));

#endif

#ifdef CONFIG_SERIAL_BFIN_CTSRTS

         init_timer(&(bfin_serial_ports[i].cts_timer));

         bfin_serial_ports[i].cts_pin         =

              bfin_serial_resource[i].uart_cts_pin;

         bfin_serial_ports[i].rts_pin         =

              bfin_serial_resource[i].uart_rts_pin;

#endif

         bfin_serial_hw_init(&bfin_serial_ports[i]);

     }

}

在这里nr_ports的值为1,即只有一个串口。从上述代码可以看出,它只是设置了uart结构体的内容,但是并没有初始化硬件。最后一个函数调用bfin_serial_hw_init,看起来好像要初始化硬件的样子,实际上什么也没做。

static void bfin_serial_hw_init(struct bfin_serial_port *uart)

{

 

#ifdef CONFIG_SERIAL_BFIN_UART0

     peripheral_request(P_UART0_TX, DRIVER_NAME);

     peripheral_request(P_UART0_RX, DRIVER_NAME);

#endif

 

#ifdef CONFIG_SERIAL_BFIN_CTSRTS

     if (uart->cts_pin >= 0) {

         gpio_request(uart->cts_pin, DRIVER_NAME);

         gpio_direction_input(uart->cts_pin);

     }

     if (uart->rts_pin >= 0) {

         gpio_request(uart->rts_pin, DRIVER_NAME);

         gpio_direction_input(uart->rts_pin, 0);

     }

#endif

}

1.2.3.2             bfin_serial_set_termios
这个函数将实际配置硬件参数,与下文所示的普通console功能相同,此时传递进来的将是bfin_serial_ports[0]这个全局变量中的port的指针,实际上也是bfin_serial_ports[0]的首地址,因此在此函数一开头就将之转换为bfin_serial_port类型的指针。

static void

bfin_serial_set_termios(struct uart_port *port, struct ktermios *termios,

            struct ktermios *old)

{

     struct bfin_serial_port *uart = (struct bfin_serial_port *)port;

     unsigned long flags;

     unsigned int baud, quot;

     unsigned short val, ier, lcr = 0;

 

     switch (termios->c_cflag & CSIZE) {

     case CS8:

         lcr = WLS(8);

         break;

     case CS7:

         lcr = WLS(7);

         break;

     case CS6:

         lcr = WLS(6);

         break;

     case CS5:

         lcr = WLS(5);

         break;

     default:

         printk(KERN_ERR "%s: word lengh not supported/n",

              __FUNCTION__);

     }

 

     if (termios->c_cflag & CSTOPB)

         lcr |= STB;

     if (termios->c_cflag & PARENB)

         lcr |= PEN;

     if (!(termios->c_cflag & PARODD))

         lcr |= EPS;

     if (termios->c_cflag & CMSPAR)

         lcr |= STP;

 

     port->read_status_mask = OE;

     if (termios->c_iflag & INPCK)

         port->read_status_mask |= (FE | PE);

     if (termios->c_iflag & (BRKINT | PARMRK))

         port->read_status_mask |= BI;

 

     /*

      * Characters to ignore

      */

     port->ignore_status_mask = 0;

     if (termios->c_iflag & IGNPAR)

         port->ignore_status_mask |= FE | PE;

     if (termios->c_iflag & IGNBRK) {

         port->ignore_status_mask |= BI;

         /*

          * If we're ignoring parity and break indicators,

          * ignore overruns too (for real raw support).

          */

         if (termios->c_iflag & IGNPAR)

              port->ignore_status_mask |= OE;

     }

 

     baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk/16);

     quot = uart_get_divisor(port, baud);

     spin_lock_irqsave(&uart->port.lock, flags);

 

     UART_SET_ANOMALY_THRESHOLD(uart, USEC_PER_SEC / baud * 15);

 

     /* Disable UART */

     ier = UART_GET_IER(uart);

#ifdef CONFIG_BF54x

     UART_CLEAR_IER(uart, 0xF);

#else

     UART_PUT_IER(uart, 0);

#endif

 

#ifndef CONFIG_BF54x

     /* Set DLAB in LCR to Access DLL and DLH */

     val = UART_GET_LCR(uart);

     val |= DLAB;

     UART_PUT_LCR(uart, val);

     SSYNC();

#endif

 

     UART_PUT_DLL(uart, quot & 0xFF);

     SSYNC();

     UART_PUT_DLH(uart, (quot >> 8) & 0xFF);

     SSYNC();

 

#ifndef CONFIG_BF54x

     /* Clear DLAB in LCR to Access THR RBR IER */

     val = UART_GET_LCR(uart);

     val &= ~DLAB;

     UART_PUT_LCR(uart, val);

     SSYNC();

#endif

 

     UART_PUT_LCR(uart, lcr);

 

     /* Enable UART */

#ifdef CONFIG_BF54x

     UART_SET_IER(uart, ier);

#else

     UART_PUT_IER(uart, ier);

#endif

 

     val = UART_GET_GCTL(uart);

     val |= UCEN;

     UART_PUT_GCTL(uart, val);

 

     spin_unlock_irqrestore(&uart->port.lock, flags);

}

此时传递进来的termios变量中的几个值:

c_cflag:此成员中保存了串口的硬件参数。

c_lflag:此成员的值为ICANON。

其它值均为0。

还有一点需要注意,在使用u-boot之类的引导程序时,通常会打开接收中断或者发送中断,而在不使用引导程序时,UART_IER复位后的值为0,为了模拟引导程序,可以在最后还原UART_IER时直接打开接收中断。类似于下面的语句:

     /* Enable UART */

#ifdef CONFIG_BF54x

     UART_SET_IER(uart, ier);

#else

     ier |= (ERBFI | ETBEI);

     UART_PUT_IER(uart, ier);

#endif

 

 

 

1.2.4   register_console
这个和普通console的功能相同,其实现为:

/*

 * The console driver calls this routine during kernel initialization

 * to register the console printing procedure with printk() and to

 * print any messages that were printed by the kernel before the

 * console driver was initialized.

 */

void register_console(struct console *console)

{

     int i;

     unsigned long flags;

     struct console *bootconsole = NULL;

 

     if (console_drivers) {

         if (console->flags & CON_BOOT)

              return;

         if (console_drivers->flags & CON_BOOT)

              bootconsole = console_drivers;

     }

 

     if (preferred_console < 0 || bootconsole || !console_drivers)

         preferred_console = selected_console;

 

     /*

      *   See if we want to use this console driver. If we

      *   didn't select a console we take the first one

      *   that registers here.

      */

     if (preferred_console < 0) {

         if (console->index < 0)

              console->index = 0;

         if (console->setup == NULL ||

             console->setup(console, NULL) == 0) {

              console->flags |= CON_ENABLED | CON_CONSDEV;

              preferred_console = 0;

         }

     }

 

     /*

      *   See if this console matches one we selected on

      *   the command line.

      */

     for (i = 0; i < MAX_CMDLINECONSOLES && console_cmdline[i].name[0];

              i++) {

         if (strcmp(console_cmdline[i].name, console->name) != 0)

              continue;

         if (console->index >= 0 &&

             console->index != console_cmdline[i].index)

              continue;

         if (console->index < 0)

              console->index = console_cmdline[i].index;

         if (console->setup &&

             console->setup(console, console_cmdline[i].options) != 0)

              break;

         console->flags |= CON_ENABLED;

         console->index = console_cmdline[i].index;

         if (i == selected_console) {

              console->flags |= CON_CONSDEV;

              preferred_console = selected_console;

         }

         break;

     }

 

     if (!(console->flags & CON_ENABLED))

         return;

 

     if (bootconsole) {

         printk(KERN_INFO "console handover: boot [%s%d] -> real [%s%d]/n",

                bootconsole->name, bootconsole->index,

                console->name, console->index);

         unregister_console(bootconsole);

         console->flags &= ~CON_PRINTBUFFER;

     }

 

     /*

      *   Put this console in the list - keep the

      *   preferred driver at the head of the list.

      */

     acquire_console_sem();

     if ((console->flags & CON_CONSDEV) || console_drivers == NULL) {

         console->next = console_drivers;

         console_drivers = console;

         if (console->next)

              console->next->flags &= ~CON_CONSDEV;

     } else {

         console->next = console_drivers->next;

         console_drivers->next = console;

     }

     if (console->flags & CON_PRINTBUFFER) {

         /*

          * release_console_sem() will print out the buffered messages

          * for us.

          */

         spin_lock_irqsave(&logbuf_lock, flags);

         con_start = log_start;

         spin_unlock_irqrestore(&logbuf_lock, flags);

     }

     release_console_sem();

}

当运行到这里时,参数console将指向全局变量bfin_early_serial_console。而console_drivers这一全局变量则为空。

当此函数执行完成后,将输出printk缓冲区中的内容:

Linux version 2.6.22.19-ADI-2008R1.5-svn ([email protected]) (gcc versio

n 4.1.2 (ADI svn)) #4 SMP Sat Jan 10 22:24:10 CST 2009

early printk enabled on early_BFuart0

1.2.4.1             串口硬件初始化
在register_console函数中要进行串口硬件的初始化工作,这个工作是由console结构体中的setup回调函数来完成的:

     int  (*setup)(struct console *, char *);

在register_console函数中有这样一段代码:

     /*

      *   See if we want to use this console driver. If we

      *   didn't select a console we take the first one

      *   that registers here.

      */

     if (preferred_console < 0) {

         if (console->index < 0)

              console->index = 0;

         if (console->setup == NULL ||

             console->setup(console, NULL) == 0) {

              console->flags |= CON_ENABLED | CON_CONSDEV;

              preferred_console = 0;

         }

     }

在此调用了setup回调函数。

在bf561的内核中,此回调函数指向bfin_serial_console_setup,它位于drivers/serial/bfin-5xx.c:

static int __init

bfin_serial_console_setup(struct console *co, char *options)

{

     struct bfin_serial_port *uart;

     int baud = 57600;

     int bits = 8;

     int parity = 'n';

     int flow = 'n';

 

     /*

      * Check whether an invalid uart number has been specified, and

      * if so, search for the first available port that does have

      * console support.

      */                                                    

     if (co->index == -1 || co->index >= nr_ports)

         co->index = 0;

     uart = &bfin_serial_ports[co->index];

 

     if (options)

         uart_parse_options(options, &baud, &parity, &bits, &flow);

     else

         bfin_serial_console_get_options(uart, &baud, &parity, &bits);

 

     return uart_set_options(&uart->port, co, baud, parity, bits, flow);

}

在这里,由于在register_console中传递过来的option为NULL,因此将直接调用bfin_serial_console_get_options,而这个函数用于直接从硬件寄存器中读取当前的串口配置,但是它仅适用于boot-loader已经对串口初始化的情况,对于没用boot-loader的情况,它将什么也不做。

因此,对于不用boot-loader的情况,early console的波特率将只能使用57600这一固定值。如果要使earlyprintk中的波特率这一参数生效,必须修改此处的逻辑。

 

1.3    通过console输出信息
在内核中,向console输出信息是通过release_console_sem函数来完成的:
/**
 * release_console_sem - unlock the console system
 *
 * Releases the semaphore which the caller holds on the console system
 * and the console driver list.
 *
 * While the semaphore was held, console output may have been buffered
 * by printk(). If this is the case, release_console_sem() emits
 * the output prior to releasing the semaphore.
 *
 * If there is output waiting for klogd, we wake it up.
 *
 * release_console_sem() may be called from any context.
 */
void release_console_sem(void)
{
     unsigned long flags;
     unsigned long _con_start, _log_end;
     unsigned long wake_klogd = 0;
 
     if (console_suspended) {
         up(&secondary_console_sem);
         return;
     }
 
     console_may_schedule = 0;
 
     for ( ; ; ) {
         spin_lock_irqsave(&logbuf_lock, flags);
         wake_klogd |= log_start - log_end;
         if (con_start == log_end)
              break;             /* Nothing to print */
         _con_start = con_start;
         _log_end = log_end;
         con_start = log_end;        /* Flush */
         spin_unlock(&logbuf_lock);
         call_console_drivers(_con_start, _log_end);
         local_irq_restore(flags);
     }
     console_locked = 0;
     up(&console_sem);
     spin_unlock_irqrestore(&logbuf_lock, flags);
     if (wake_klogd)
         wake_up_klogd();
}
在这里,实际输出通过call_console_drivers函数完成:
/*
 * Call the console drivers, asking them to write out
 * log_buf[start] to log_buf[end - 1].
 * The console_sem must be held.
 */
static void call_console_drivers(unsigned long start, unsigned long end)
{
     unsigned long cur_index, start_print;
     static int msg_level = -1;
 
     BUG_ON(((long)(start - end)) > 0);
 
     cur_index = start;
     start_print = start;
     while (cur_index != end) {
         if (msg_level < 0 && ((end - cur_index) > 2) &&
                   LOG_BUF(cur_index + 0) == '<' &&
                   LOG_BUF(cur_index + 1) >= '0' &&
                   LOG_BUF(cur_index + 1) <= '7' &&
                   LOG_BUF(cur_index + 2) == '>') {
              msg_level = LOG_BUF(cur_index + 1) - '0';
              cur_index += 3;
              start_print = cur_index;
         }
         while (cur_index != end) {
              char c = LOG_BUF(cur_index);
 
              cur_index++;
              if (c == '/n') {
                   if (msg_level < 0) {
                       /*
                        * printk() has already given us loglevel tags in
                        * the buffer. This code is here in case the
                        * log buffer has wrapped right round and scribbled
                        * on those tags
                        */
                       msg_level = default_message_loglevel;
                   }
                   _call_console_drivers(start_print, cur_index, msg_level);
                   msg_level = -1;
                   start_print = cur_index;
                   break;
              }
         }
     }
     _call_console_drivers(start_print, end, msg_level);
}
继续跟踪_call_console_drivers:
/*
 * Write out chars from start to end - 1 inclusive
 */
static void _call_console_drivers(unsigned long start,
                   unsigned long end, int msg_log_level)
{
     if ((msg_log_level < console_loglevel || ignore_loglevel) &&
              console_drivers && start != end) {
         if ((start & LOG_BUF_MASK) > (end & LOG_BUF_MASK)) {
              /* wrapped write */
              __call_console_drivers(start & LOG_BUF_MASK,
                            log_buf_len);
              __call_console_drivers(0, end & LOG_BUF_MASK);
         } else {
              __call_console_drivers(start, end);
         }
     }
}
继续跟踪__call_console_drivers:
/*
 * Call the console drivers on a range of log_buf
 */
static void __call_console_drivers(unsigned long start, unsigned long end)
{
     struct console *con;
 
     for (con = console_drivers; con; con = con->next) {
         if ((con->flags & CON_ENABLED) && con->write &&
                   (cpu_online(smp_processor_id()) ||
                   (con->flags & CON_ANYTIME)))
              con->write(con, &LOG_BUF(start), end - start);
     }
}
嘿嘿,原来是调用console结构体中的write函数!记得我们在内核中是使用了bfin_serial_console做为我们的console,而这个结构体中的write回调函数则初始化为bfin_serial_console_write,这个函数在drivers/serial/bfin_5xx.c:
/*
 * Interrupts are disabled on entering
 */
static void
bfin_serial_console_write(struct console *co, const char *s, unsigned int count)
{
     struct bfin_serial_port *uart = &bfin_serial_ports[co->index];
     int flags = 0;
 
     spin_lock_irqsave(&uart->port.lock, flags);
     uart_console_write(&uart->port, s, count, bfin_serial_console_putchar);
     spin_unlock_irqrestore(&uart->port.lock, flags);
}
再跟踪uart_console_write,此函数位于drivers/serial/serial_core.c。
/*
 *   uart_console_write - write a console message to a serial port
 *   @port: the port to write the message
 *   @s: array of characters
 *   @count: number of characters in string to write
 *   @write: function to write character to port
 */
void uart_console_write(struct uart_port *port, const char *s,
              unsigned int count,
              void (*putchar)(struct uart_port *, int))
{
     unsigned int i;
 
     for (i = 0; i < count; i++, s++) {
         if (*s == '/n')
              putchar(port, '/r');
         putchar(port, *s);
     }
}
因为uart是一个通用的抽象接口,它需要指定与具体硬件相关的函数来进行输出,在我们的调用中使用了bfin_serial_console_putchar做为回调函数,因此实际输出是通过bfin_serial_console_putchar来完成的,此函数在drivers/serial/bfin_5xx.c:
static void bfin_serial_console_putchar(struct uart_port *port, int ch)
{
     struct bfin_serial_port *uart = (struct bfin_serial_port *)port;
     while (!(UART_GET_LSR(uart) & THRE))
         barrier();
     UART_PUT_CHAR(uart, ch);
     SSYNC();
}

 

细看printk.c文件,可以发现几个与printk函数相关的参数:

1.1 log_buf_len

__setup("log_buf_len=", log_buf_len_setup);

即这个内核参数由log_buf_len_setup函数进行处理:

static char __log_buf[__LOG_BUF_LEN];

static char *log_buf = __log_buf;

static int log_buf_len = __LOG_BUF_LEN;

static unsigned long logged_chars; /* Number of chars produced since last read+clear operation */

 

static int __init log_buf_len_setup(char *str)

{

unsigned long size = memparse(str, &str);

unsigned long flags;

 

if (size)

size = roundup_pow_of_two(size);

if (size > log_buf_len) {

unsigned long start, dest_idx, offset;

char *new_log_buf;

 

new_log_buf = alloc_bootmem(size);

if (!new_log_buf) {

printk(KERN_WARNING "log_buf_len: allocation failed/n");

goto out;

}

 

spin_lock_irqsave(&logbuf_lock, flags);

log_buf_len = size;

log_buf = new_log_buf;

 

offset = start = min(con_start, log_start);

dest_idx = 0;

while (start != log_end) {

log_buf[dest_idx] = __log_buf[start & (__LOG_BUF_LEN - 1)];

start++;

dest_idx++;

}

log_start -= offset;

con_start -= offset;

log_end -= offset;

spin_unlock_irqrestore(&logbuf_lock, flags);

 

printk(KERN_NOTICE "log_buf_len: %d/n", log_buf_len);

}

out:

return 1;

}

在默认情况下,printk缓冲区的大小由__LOG_BUF_LEN指定

#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)

#define CONFIG_LOG_BUF_SHIFT 14

214次方。输入的值必须比这个值大才有效果。而且由于使用了memparse进行数值的分析,因此它可以K, M, G这三个值。如:

log_buf_len=64k

1.2 ignore_loglevel

static int __read_mostly ignore_loglevel;

 

static int __init ignore_loglevel_setup(char *str)

{

ignore_loglevel = 1;

printk(KERN_INFO "debug: ignoring loglevel setting./n");

 

return 1;

}

 

__setup("ignore_loglevel", ignore_loglevel_setup);

这个内核参数不需要设置值。这个参数仅用在_call_console_drivers函数中

static void _call_console_drivers(unsigned long start,

unsigned long end, int msg_log_level)

{

if ((msg_log_level < console_loglevel || ignore_loglevel) &&

console_drivers && start != end) {

if ((start & LOG_BUF_MASK) > (end & LOG_BUF_MASK)) {

/* wrapped write */

__call_console_drivers(start & LOG_BUF_MASK,

log_buf_len);

__call_console_drivers(0, end & LOG_BUF_MASK);

} else {

__call_console_drivers(start, end);

}

}

}

在使用了这个内核参数后,printk将忽略输出的级别,直接将传递进来的所有信息输出。

1.3 KERN_*

在使用printk输出的时候,可以使用KERN_*宏来指定输出级别。

#define KERN_EMERG "<0>" /* system is unusable */

#define KERN_ALERT "<1>" /* action must be taken immediately */

#define KERN_CRIT "<2>" /* critical conditions */

#define KERN_ERR "<3>" /* error conditions */

#define KERN_WARNING "<4>" /* warning conditions */

#define KERN_NOTICE "<5>" /* normal but significant condition */

#define KERN_INFO "<6>" /* informational */

#define KERN_DEBUG "<7>" /* debug-level messages */

_call_console_drivers函数中可以看到,当指定的输出级别大于等于console_loglevel时,信息将不会输出。console_loglevel的定义为:

#define console_loglevel (console_printk[0])

当使用printk而不指定输出级别时,printk取默认级别default_message_loglevel,其定义为:

#define default_message_loglevel (console_printk[1])

这里涉及的console_printk是一个全局变量:

int console_printk[4] = {

DEFAULT_CONSOLE_LOGLEVEL, /* console_loglevel */

DEFAULT_MESSAGE_LOGLEVEL, /* default_message_loglevel */

MINIMUM_CONSOLE_LOGLEVEL, /* minimum_console_loglevel */

DEFAULT_CONSOLE_LOGLEVEL, /* default_console_loglevel */

};

#define DEFAULT_CONSOLE_LOGLEVEL 7 /* anything MORE serious than KERN_DEBUG */

#define DEFAULT_MESSAGE_LOGLEVEL 4 /* KERN_WARNING */

因此,只要不是在输出时指定KERN_DEBUG,其信息都将被printk输出。

1.4 printk_time

这个参数定义为:

#if defined(CONFIG_PRINTK_TIME)

static int printk_time = 1;

#else

static int printk_time = 0;

#endif

module_param(printk_time, int, S_IRUGO | S_IWUSR);

 

static int __init printk_time_setup(char *str)

{

if (*str)

return 0;

printk_time = 1;

return 1;

}

 

__setup("time", printk_time_setup);

在指定这个参数之后,printk将在每条信息之前加上时间。

asmlinkage int vprintk(const char *fmt, va_list args)

{

…………………………….

for (p = printk_buf; *p; p++) {

if (log_level_unknown) {

/* log_level_unknown signals the start of a new line */

if (printk_time) {

int loglev_char;

char tbuf[50], *tp;

unsigned tlen;

unsigned long long t;

unsigned long nanosec_rem;

 

/*

* force the log level token to be

* before the time output.

*/

if (p[0] == '<' && p[1] >='0' &&

p[1] <= '7' && p[2] == '>') {

loglev_char = p[1];

p += 3;

printed_len -= 3;

} else {

loglev_char = default_message_loglevel

+ '0';

}

t = printk_clock();

nanosec_rem = do_div(t, 1000000000);

tlen = sprintf(tbuf,

"<%c>[%5lu.%06lu] ",

loglev_char,

(unsigned long)t,

nanosec_rem/1000);

 

for (tp = tbuf; tp < tbuf + tlen; tp++)

emit_log_char(*tp);

printed_len += tlen;

} else {

if (p[0] != '<' || p[1] < '0' ||

p[1] > '7' || p[2] != '>') {

emit_log_char('<');

emit_log_char(default_message_loglevel

+ '0');

emit_log_char('>');

printed_len += 3;

}

}

log_level_unknown = 0;

if (!*p)

break;

}

emit_log_char(*p);

if (*p == '/n')

log_level_unknown = 1;

}

 

你可能感兴趣的:(timer,struct,Semaphore,null,output,statistics)